Combination of absorbable mesh and demineralized bone matrix in orbital wall fracture for preventing herniation of orbit
After restoration of orbit wall fracture, preventing sequelae is important. An absorbable mesh is commonly used in orbit wall fracture, yet it has limitation due to orbit sagging when bony defect is larger than the moderate size (1 × 1 cm2). In this study, the authors present a satisfactory result i...
Gespeichert in:
Veröffentlicht in: | The Journal of craniofacial surgery 2014-07, Vol.25 (4), p.e352-e356 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | After restoration of orbit wall fracture, preventing sequelae is important. An absorbable mesh is commonly used in orbit wall fracture, yet it has limitation due to orbit sagging when bony defect is larger than the moderate size (1 × 1 cm2). In this study, the authors present a satisfactory result in treating orbit wall fracture larger than the moderate size with a combination of absorbable mesh and demineralized bone matrix.From 2009 to 2012, 63 patients with bony defect larger than the moderate size, who were treated with a combination of absorbable mesh and demineralized bone matrix, were reviewed retrospectively. The site of bony defect, size, and applied amount of demineralized bone matrix were reviewed, and a 2-year follow-up was done. Facial computed tomography scans were checked preoperative, immediate postoperative, and 2-year postoperative.Among the 63 patients, there were 52 men and 11 women. Mean age was 33.3 years. The most common cause was blunt blow (35 cases); mean defect size was 13.36 × 12.82 mm2 in inferior wall fracture and 20.69 × 14.41 mm2 in medial wall fracture. There was no complication except for 3 cases of infraorbital nerve hypoesthesia. A 2-year follow-up computed tomography showed that the surgical site preserved bony formation without herniation. In treating moderate-sized bony defect in orbit wall fracture, absorbable mesh and demineralized bone matrix can maintain structural stability through good bony formation even after degradation of absorbable mesh. |
---|---|
ISSN: | 1049-2275 1536-3732 |
DOI: | 10.1097/SCS.0000000000000796 |