Super-high-frequency SAW transducer utilizing AIN/ultrananocrystalline diamond architectures

SAW devices have been used in a variety of applications including high-volume telecommunications, electronic devices, and advanced sensors. Recently, high-bit-rate data processing in the gigahertz frequency range and ultrahigh-sensitivity sensors have called for the development of advanced SAW trans...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2013-08, Vol.60 (8), p.1581-1586
Hauptverfasser: Dow, A. B. A., Popov, C., Schmid, U., Kherani, N. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1586
container_issue 8
container_start_page 1581
container_title IEEE transactions on ultrasonics, ferroelectrics, and frequency control
container_volume 60
creator Dow, A. B. A.
Popov, C.
Schmid, U.
Kherani, N. P.
description SAW devices have been used in a variety of applications including high-volume telecommunications, electronic devices, and advanced sensors. Recently, high-bit-rate data processing in the gigahertz frequency range and ultrahigh-sensitivity sensors have called for the development of advanced SAW transducers. Because of its high acoustic velocity, ultrananocrystalline diamond (UNCD) with a crystal size of 3 to 5 nm, embedded in an amorphous carbon matrix with grain boundaries of 1 to 1.5 nm, is integrated with AlN to extend the operating frequency of SAW devices. We utilize this attractive property of UNCD through the facile synthesis of bilayer architectures consisting of sputtered AlN deposited on UNCD film. The UNCD films were synthesized using microwave plasma-enhanced chemical vapor deposition. The SAW devices were fabricated by electron beam lithography and lift off processes. The fabricated SAW nanodevices exhibit resonance frequencies up to 15.4 GHz. Multiple SAW transducers were fabricated with spatial periods ranging from 580 nm to 3.2 μm.
doi_str_mv 10.1109/TUFFC.2013.2738
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1544324391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6573434</ieee_id><sourcerecordid>1544324391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c260t-46b9ffc7d7267d3e8124e4bdaffd32e7fdc40982a541a2481efa5308eae99ec53</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EgvIxMyChSCwsaf3ZOGNVUUBCMEDFgmS59pm6SpNix0P59aS0dEA33HDPvbp7ELokuE8ILgdv08lk3KeYsD4tmDxAPSKoyGUpxCHqYSlFzjDBJ-g0xgXGhPOSHqMTKjDmgsoe-nhNKwj53H_OcxfgK0Ft1tnr6D1rg66jTQZCllpf-W9ff2ajx-dBqjYjXTcmrGOrq8rXkFmvl01tMx3M3Ldg2hQgnqMjp6sIF7t-hqaTu7fxQ_70cv84Hj3lhg5xm_PhrHTOFLagw8IykIRy4DOrnbOMQuGs4biUVAtONOWSgNOCYQkayhKMYGfodpu7Ck33QWzV0kcDVaVraFJURHDOKGcl6dCbf-iiSaHurlOEE1lQxqXsqMGWMqGJMYBTq-CXOqwVwWojXv2KVxvxaiO-27je5abZEuye_zPdAVdbwAPAfjwUBeNd_QCNgIhi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1418723488</pqid></control><display><type>article</type><title>Super-high-frequency SAW transducer utilizing AIN/ultrananocrystalline diamond architectures</title><source>IEEE Electronic Library (IEL)</source><creator>Dow, A. B. A. ; Popov, C. ; Schmid, U. ; Kherani, N. P.</creator><creatorcontrib>Dow, A. B. A. ; Popov, C. ; Schmid, U. ; Kherani, N. P.</creatorcontrib><description>SAW devices have been used in a variety of applications including high-volume telecommunications, electronic devices, and advanced sensors. Recently, high-bit-rate data processing in the gigahertz frequency range and ultrahigh-sensitivity sensors have called for the development of advanced SAW transducers. Because of its high acoustic velocity, ultrananocrystalline diamond (UNCD) with a crystal size of 3 to 5 nm, embedded in an amorphous carbon matrix with grain boundaries of 1 to 1.5 nm, is integrated with AlN to extend the operating frequency of SAW devices. We utilize this attractive property of UNCD through the facile synthesis of bilayer architectures consisting of sputtered AlN deposited on UNCD film. The UNCD films were synthesized using microwave plasma-enhanced chemical vapor deposition. The SAW devices were fabricated by electron beam lithography and lift off processes. The fabricated SAW nanodevices exhibit resonance frequencies up to 15.4 GHz. Multiple SAW transducers were fabricated with spatial periods ranging from 580 nm to 3.2 μm.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2013.2738</identifier><identifier>PMID: 25004528</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Diamonds ; III-V semiconductor materials ; Studies ; Surface acoustic wave devices ; Surface treatment ; Transducers</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2013-08, Vol.60 (8), p.1581-1586</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c260t-46b9ffc7d7267d3e8124e4bdaffd32e7fdc40982a541a2481efa5308eae99ec53</citedby><cites>FETCH-LOGICAL-c260t-46b9ffc7d7267d3e8124e4bdaffd32e7fdc40982a541a2481efa5308eae99ec53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6573434$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6573434$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25004528$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dow, A. B. A.</creatorcontrib><creatorcontrib>Popov, C.</creatorcontrib><creatorcontrib>Schmid, U.</creatorcontrib><creatorcontrib>Kherani, N. P.</creatorcontrib><title>Super-high-frequency SAW transducer utilizing AIN/ultrananocrystalline diamond architectures</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>SAW devices have been used in a variety of applications including high-volume telecommunications, electronic devices, and advanced sensors. Recently, high-bit-rate data processing in the gigahertz frequency range and ultrahigh-sensitivity sensors have called for the development of advanced SAW transducers. Because of its high acoustic velocity, ultrananocrystalline diamond (UNCD) with a crystal size of 3 to 5 nm, embedded in an amorphous carbon matrix with grain boundaries of 1 to 1.5 nm, is integrated with AlN to extend the operating frequency of SAW devices. We utilize this attractive property of UNCD through the facile synthesis of bilayer architectures consisting of sputtered AlN deposited on UNCD film. The UNCD films were synthesized using microwave plasma-enhanced chemical vapor deposition. The SAW devices were fabricated by electron beam lithography and lift off processes. The fabricated SAW nanodevices exhibit resonance frequencies up to 15.4 GHz. Multiple SAW transducers were fabricated with spatial periods ranging from 580 nm to 3.2 μm.</description><subject>Diamonds</subject><subject>III-V semiconductor materials</subject><subject>Studies</subject><subject>Surface acoustic wave devices</subject><subject>Surface treatment</subject><subject>Transducers</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkD1PwzAQhi0EgvIxMyChSCwsaf3ZOGNVUUBCMEDFgmS59pm6SpNix0P59aS0dEA33HDPvbp7ELokuE8ILgdv08lk3KeYsD4tmDxAPSKoyGUpxCHqYSlFzjDBJ-g0xgXGhPOSHqMTKjDmgsoe-nhNKwj53H_OcxfgK0Ft1tnr6D1rg66jTQZCllpf-W9ff2ajx-dBqjYjXTcmrGOrq8rXkFmvl01tMx3M3Ldg2hQgnqMjp6sIF7t-hqaTu7fxQ_70cv84Hj3lhg5xm_PhrHTOFLagw8IykIRy4DOrnbOMQuGs4biUVAtONOWSgNOCYQkayhKMYGfodpu7Ck33QWzV0kcDVaVraFJURHDOKGcl6dCbf-iiSaHurlOEE1lQxqXsqMGWMqGJMYBTq-CXOqwVwWojXv2KVxvxaiO-27je5abZEuye_zPdAVdbwAPAfjwUBeNd_QCNgIhi</recordid><startdate>201308</startdate><enddate>201308</enddate><creator>Dow, A. B. A.</creator><creator>Popov, C.</creator><creator>Schmid, U.</creator><creator>Kherani, N. P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>201308</creationdate><title>Super-high-frequency SAW transducer utilizing AIN/ultrananocrystalline diamond architectures</title><author>Dow, A. B. A. ; Popov, C. ; Schmid, U. ; Kherani, N. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c260t-46b9ffc7d7267d3e8124e4bdaffd32e7fdc40982a541a2481efa5308eae99ec53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Diamonds</topic><topic>III-V semiconductor materials</topic><topic>Studies</topic><topic>Surface acoustic wave devices</topic><topic>Surface treatment</topic><topic>Transducers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dow, A. B. A.</creatorcontrib><creatorcontrib>Popov, C.</creatorcontrib><creatorcontrib>Schmid, U.</creatorcontrib><creatorcontrib>Kherani, N. P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dow, A. B. A.</au><au>Popov, C.</au><au>Schmid, U.</au><au>Kherani, N. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Super-high-frequency SAW transducer utilizing AIN/ultrananocrystalline diamond architectures</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2013-08</date><risdate>2013</risdate><volume>60</volume><issue>8</issue><spage>1581</spage><epage>1586</epage><pages>1581-1586</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>SAW devices have been used in a variety of applications including high-volume telecommunications, electronic devices, and advanced sensors. Recently, high-bit-rate data processing in the gigahertz frequency range and ultrahigh-sensitivity sensors have called for the development of advanced SAW transducers. Because of its high acoustic velocity, ultrananocrystalline diamond (UNCD) with a crystal size of 3 to 5 nm, embedded in an amorphous carbon matrix with grain boundaries of 1 to 1.5 nm, is integrated with AlN to extend the operating frequency of SAW devices. We utilize this attractive property of UNCD through the facile synthesis of bilayer architectures consisting of sputtered AlN deposited on UNCD film. The UNCD films were synthesized using microwave plasma-enhanced chemical vapor deposition. The SAW devices were fabricated by electron beam lithography and lift off processes. The fabricated SAW nanodevices exhibit resonance frequencies up to 15.4 GHz. Multiple SAW transducers were fabricated with spatial periods ranging from 580 nm to 3.2 μm.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>25004528</pmid><doi>10.1109/TUFFC.2013.2738</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-3010
ispartof IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2013-08, Vol.60 (8), p.1581-1586
issn 0885-3010
1525-8955
language eng
recordid cdi_proquest_miscellaneous_1544324391
source IEEE Electronic Library (IEL)
subjects Diamonds
III-V semiconductor materials
Studies
Surface acoustic wave devices
Surface treatment
Transducers
title Super-high-frequency SAW transducer utilizing AIN/ultrananocrystalline diamond architectures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T23%3A10%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Super-high-frequency%20SAW%20transducer%20utilizing%20AIN/ultrananocrystalline%20diamond%20architectures&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Dow,%20A.%20B.%20A.&rft.date=2013-08&rft.volume=60&rft.issue=8&rft.spage=1581&rft.epage=1586&rft.pages=1581-1586&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2013.2738&rft_dat=%3Cproquest_RIE%3E1544324391%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1418723488&rft_id=info:pmid/25004528&rft_ieee_id=6573434&rfr_iscdi=true