Super-high-frequency SAW transducer utilizing AIN/ultrananocrystalline diamond architectures
SAW devices have been used in a variety of applications including high-volume telecommunications, electronic devices, and advanced sensors. Recently, high-bit-rate data processing in the gigahertz frequency range and ultrahigh-sensitivity sensors have called for the development of advanced SAW trans...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2013-08, Vol.60 (8), p.1581-1586 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1586 |
---|---|
container_issue | 8 |
container_start_page | 1581 |
container_title | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
container_volume | 60 |
creator | Dow, A. B. A. Popov, C. Schmid, U. Kherani, N. P. |
description | SAW devices have been used in a variety of applications including high-volume telecommunications, electronic devices, and advanced sensors. Recently, high-bit-rate data processing in the gigahertz frequency range and ultrahigh-sensitivity sensors have called for the development of advanced SAW transducers. Because of its high acoustic velocity, ultrananocrystalline diamond (UNCD) with a crystal size of 3 to 5 nm, embedded in an amorphous carbon matrix with grain boundaries of 1 to 1.5 nm, is integrated with AlN to extend the operating frequency of SAW devices. We utilize this attractive property of UNCD through the facile synthesis of bilayer architectures consisting of sputtered AlN deposited on UNCD film. The UNCD films were synthesized using microwave plasma-enhanced chemical vapor deposition. The SAW devices were fabricated by electron beam lithography and lift off processes. The fabricated SAW nanodevices exhibit resonance frequencies up to 15.4 GHz. Multiple SAW transducers were fabricated with spatial periods ranging from 580 nm to 3.2 μm. |
doi_str_mv | 10.1109/TUFFC.2013.2738 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1544324391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6573434</ieee_id><sourcerecordid>1544324391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c260t-46b9ffc7d7267d3e8124e4bdaffd32e7fdc40982a541a2481efa5308eae99ec53</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EgvIxMyChSCwsaf3ZOGNVUUBCMEDFgmS59pm6SpNix0P59aS0dEA33HDPvbp7ELokuE8ILgdv08lk3KeYsD4tmDxAPSKoyGUpxCHqYSlFzjDBJ-g0xgXGhPOSHqMTKjDmgsoe-nhNKwj53H_OcxfgK0Ft1tnr6D1rg66jTQZCllpf-W9ff2ajx-dBqjYjXTcmrGOrq8rXkFmvl01tMx3M3Ldg2hQgnqMjp6sIF7t-hqaTu7fxQ_70cv84Hj3lhg5xm_PhrHTOFLagw8IykIRy4DOrnbOMQuGs4biUVAtONOWSgNOCYQkayhKMYGfodpu7Ck33QWzV0kcDVaVraFJURHDOKGcl6dCbf-iiSaHurlOEE1lQxqXsqMGWMqGJMYBTq-CXOqwVwWojXv2KVxvxaiO-27je5abZEuye_zPdAVdbwAPAfjwUBeNd_QCNgIhi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1418723488</pqid></control><display><type>article</type><title>Super-high-frequency SAW transducer utilizing AIN/ultrananocrystalline diamond architectures</title><source>IEEE Electronic Library (IEL)</source><creator>Dow, A. B. A. ; Popov, C. ; Schmid, U. ; Kherani, N. P.</creator><creatorcontrib>Dow, A. B. A. ; Popov, C. ; Schmid, U. ; Kherani, N. P.</creatorcontrib><description>SAW devices have been used in a variety of applications including high-volume telecommunications, electronic devices, and advanced sensors. Recently, high-bit-rate data processing in the gigahertz frequency range and ultrahigh-sensitivity sensors have called for the development of advanced SAW transducers. Because of its high acoustic velocity, ultrananocrystalline diamond (UNCD) with a crystal size of 3 to 5 nm, embedded in an amorphous carbon matrix with grain boundaries of 1 to 1.5 nm, is integrated with AlN to extend the operating frequency of SAW devices. We utilize this attractive property of UNCD through the facile synthesis of bilayer architectures consisting of sputtered AlN deposited on UNCD film. The UNCD films were synthesized using microwave plasma-enhanced chemical vapor deposition. The SAW devices were fabricated by electron beam lithography and lift off processes. The fabricated SAW nanodevices exhibit resonance frequencies up to 15.4 GHz. Multiple SAW transducers were fabricated with spatial periods ranging from 580 nm to 3.2 μm.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2013.2738</identifier><identifier>PMID: 25004528</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Diamonds ; III-V semiconductor materials ; Studies ; Surface acoustic wave devices ; Surface treatment ; Transducers</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2013-08, Vol.60 (8), p.1581-1586</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c260t-46b9ffc7d7267d3e8124e4bdaffd32e7fdc40982a541a2481efa5308eae99ec53</citedby><cites>FETCH-LOGICAL-c260t-46b9ffc7d7267d3e8124e4bdaffd32e7fdc40982a541a2481efa5308eae99ec53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6573434$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6573434$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25004528$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dow, A. B. A.</creatorcontrib><creatorcontrib>Popov, C.</creatorcontrib><creatorcontrib>Schmid, U.</creatorcontrib><creatorcontrib>Kherani, N. P.</creatorcontrib><title>Super-high-frequency SAW transducer utilizing AIN/ultrananocrystalline diamond architectures</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>SAW devices have been used in a variety of applications including high-volume telecommunications, electronic devices, and advanced sensors. Recently, high-bit-rate data processing in the gigahertz frequency range and ultrahigh-sensitivity sensors have called for the development of advanced SAW transducers. Because of its high acoustic velocity, ultrananocrystalline diamond (UNCD) with a crystal size of 3 to 5 nm, embedded in an amorphous carbon matrix with grain boundaries of 1 to 1.5 nm, is integrated with AlN to extend the operating frequency of SAW devices. We utilize this attractive property of UNCD through the facile synthesis of bilayer architectures consisting of sputtered AlN deposited on UNCD film. The UNCD films were synthesized using microwave plasma-enhanced chemical vapor deposition. The SAW devices were fabricated by electron beam lithography and lift off processes. The fabricated SAW nanodevices exhibit resonance frequencies up to 15.4 GHz. Multiple SAW transducers were fabricated with spatial periods ranging from 580 nm to 3.2 μm.</description><subject>Diamonds</subject><subject>III-V semiconductor materials</subject><subject>Studies</subject><subject>Surface acoustic wave devices</subject><subject>Surface treatment</subject><subject>Transducers</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkD1PwzAQhi0EgvIxMyChSCwsaf3ZOGNVUUBCMEDFgmS59pm6SpNix0P59aS0dEA33HDPvbp7ELokuE8ILgdv08lk3KeYsD4tmDxAPSKoyGUpxCHqYSlFzjDBJ-g0xgXGhPOSHqMTKjDmgsoe-nhNKwj53H_OcxfgK0Ft1tnr6D1rg66jTQZCllpf-W9ff2ajx-dBqjYjXTcmrGOrq8rXkFmvl01tMx3M3Ldg2hQgnqMjp6sIF7t-hqaTu7fxQ_70cv84Hj3lhg5xm_PhrHTOFLagw8IykIRy4DOrnbOMQuGs4biUVAtONOWSgNOCYQkayhKMYGfodpu7Ck33QWzV0kcDVaVraFJURHDOKGcl6dCbf-iiSaHurlOEE1lQxqXsqMGWMqGJMYBTq-CXOqwVwWojXv2KVxvxaiO-27je5abZEuye_zPdAVdbwAPAfjwUBeNd_QCNgIhi</recordid><startdate>201308</startdate><enddate>201308</enddate><creator>Dow, A. B. A.</creator><creator>Popov, C.</creator><creator>Schmid, U.</creator><creator>Kherani, N. P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>201308</creationdate><title>Super-high-frequency SAW transducer utilizing AIN/ultrananocrystalline diamond architectures</title><author>Dow, A. B. A. ; Popov, C. ; Schmid, U. ; Kherani, N. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c260t-46b9ffc7d7267d3e8124e4bdaffd32e7fdc40982a541a2481efa5308eae99ec53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Diamonds</topic><topic>III-V semiconductor materials</topic><topic>Studies</topic><topic>Surface acoustic wave devices</topic><topic>Surface treatment</topic><topic>Transducers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dow, A. B. A.</creatorcontrib><creatorcontrib>Popov, C.</creatorcontrib><creatorcontrib>Schmid, U.</creatorcontrib><creatorcontrib>Kherani, N. P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dow, A. B. A.</au><au>Popov, C.</au><au>Schmid, U.</au><au>Kherani, N. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Super-high-frequency SAW transducer utilizing AIN/ultrananocrystalline diamond architectures</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2013-08</date><risdate>2013</risdate><volume>60</volume><issue>8</issue><spage>1581</spage><epage>1586</epage><pages>1581-1586</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>SAW devices have been used in a variety of applications including high-volume telecommunications, electronic devices, and advanced sensors. Recently, high-bit-rate data processing in the gigahertz frequency range and ultrahigh-sensitivity sensors have called for the development of advanced SAW transducers. Because of its high acoustic velocity, ultrananocrystalline diamond (UNCD) with a crystal size of 3 to 5 nm, embedded in an amorphous carbon matrix with grain boundaries of 1 to 1.5 nm, is integrated with AlN to extend the operating frequency of SAW devices. We utilize this attractive property of UNCD through the facile synthesis of bilayer architectures consisting of sputtered AlN deposited on UNCD film. The UNCD films were synthesized using microwave plasma-enhanced chemical vapor deposition. The SAW devices were fabricated by electron beam lithography and lift off processes. The fabricated SAW nanodevices exhibit resonance frequencies up to 15.4 GHz. Multiple SAW transducers were fabricated with spatial periods ranging from 580 nm to 3.2 μm.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>25004528</pmid><doi>10.1109/TUFFC.2013.2738</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-3010 |
ispartof | IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2013-08, Vol.60 (8), p.1581-1586 |
issn | 0885-3010 1525-8955 |
language | eng |
recordid | cdi_proquest_miscellaneous_1544324391 |
source | IEEE Electronic Library (IEL) |
subjects | Diamonds III-V semiconductor materials Studies Surface acoustic wave devices Surface treatment Transducers |
title | Super-high-frequency SAW transducer utilizing AIN/ultrananocrystalline diamond architectures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T23%3A10%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Super-high-frequency%20SAW%20transducer%20utilizing%20AIN/ultrananocrystalline%20diamond%20architectures&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Dow,%20A.%20B.%20A.&rft.date=2013-08&rft.volume=60&rft.issue=8&rft.spage=1581&rft.epage=1586&rft.pages=1581-1586&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2013.2738&rft_dat=%3Cproquest_RIE%3E1544324391%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1418723488&rft_id=info:pmid/25004528&rft_ieee_id=6573434&rfr_iscdi=true |