Application of Artificial Neural Networks in Prediction of Diclofenac Sodium Release From Drug-Modified Zeolites Physical Mixtures and Antiedematous Activity Assessment

In this study, utilization of artificial neural network (ANN) models [static—multilayer perceptron (MLP) and generalized regression neural networks and dynamic—gamma one-layer network and recurrent one-layer network] for prediction of diclofenac sodium (DS) release from drug-cationic surfactant-modi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of pharmaceutical sciences 2014-04, Vol.103 (4), p.1085-1094
Hauptverfasser: Krajišnik, Danina, Stepanović-Petrović, Radica, Tomić, Maja, Micov, Ana, Ibrić, Svetlana, Milić, Jela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1094
container_issue 4
container_start_page 1085
container_title Journal of pharmaceutical sciences
container_volume 103
creator Krajišnik, Danina
Stepanović-Petrović, Radica
Tomić, Maja
Micov, Ana
Ibrić, Svetlana
Milić, Jela
description In this study, utilization of artificial neural network (ANN) models [static—multilayer perceptron (MLP) and generalized regression neural networks and dynamic—gamma one-layer network and recurrent one-layer network] for prediction of diclofenac sodium (DS) release from drug-cationic surfactant-modified zeolites physical mixtures comprising different surfactant/drug molar ratio (0.2–2.5) was performed. The inputs for ANNs trainings were surfactant/drug molar ratios, that is, drug loadings in the drug-modified zeolite mixtures, whereas the outputs were percents of drug release in predetermined time points during drug release test (8 h). The obtained results revealed that MLP showed the highest correlation between experimental and predicted drug release. The safety of both natural and cationic surfactant-modified zeolite as a potential excipient was confirmed in an acute toxicity testing during 72h. DS (1.5, 5, 10, mg/kg, p.o.) as well as DS-modified zeolites mixtures produced a significant dose-dependent reduction of the rat paw edema induced by proinflammatory agent carrageenan. DS antiedematous effect was intensified and prolonged significantly by modified zeolite. These results could suggest the potential improvement in the treatment of inflammation by DS-modified zeolite mixtures. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 103:1085–1094, 2014
doi_str_mv 10.1002/jps.23869
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1544017622</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022354915306250</els_id><sourcerecordid>1544017622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4969-7b984970cd249afa4217236168fc1f0ea0d15d3eb82baef62e350f4d5a3e84b03</originalsourceid><addsrcrecordid>eNp1kctuFDEQRS0EIkNgwQ8gS2xg0Ylf_Vq2EsJDCYwIbNhYbrsMHrrbje1OmD_iM3EyGRYIViW5jm_dqovQU0qOKCHseDPHI8abqr2HVrRkpKgIre-jVe6xgpeiPUCPYtwQQipSlg_RAROirVrGVuhXN8-D0yo5P2FvcReSs047NeD3sITbkq59-B6xm_A6gHF6z546PXgLk9L40hu3jPgjDKAi4LPgR3walq_FRW5YBwZ_AT-4BBGvv21jHjjgC_czLSG_qMngbkqZglElv0Tc5RlXLm1xFyPEOMKUHqMHVg0RntzVQ_T57NWnkzfF-YfXb0-680LfrFTUfduItibaMNEqqwSjNeMVrRqrqSWgiKGl4dA3rFdgKwa8JFaYUnFoRE_4IXqx052D_7FATHJ0UcMwqAmyNUlLIfJ1K8Yy-vwvdOOXMGV3mSK1aDmnIlMvd5QOPsYAVs7BjSpsJSXyJj6Z45O38WX22Z3i0o9g_pD7vDJwvAOu3QDb_yvJd-vLvSTf_YB8tCsHQUbtYNI5yAA6SePdP4z8BkEOuKE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1507493314</pqid></control><display><type>article</type><title>Application of Artificial Neural Networks in Prediction of Diclofenac Sodium Release From Drug-Modified Zeolites Physical Mixtures and Antiedematous Activity Assessment</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>Alma/SFX Local Collection</source><creator>Krajišnik, Danina ; Stepanović-Petrović, Radica ; Tomić, Maja ; Micov, Ana ; Ibrić, Svetlana ; Milić, Jela</creator><creatorcontrib>Krajišnik, Danina ; Stepanović-Petrović, Radica ; Tomić, Maja ; Micov, Ana ; Ibrić, Svetlana ; Milić, Jela</creatorcontrib><description>In this study, utilization of artificial neural network (ANN) models [static—multilayer perceptron (MLP) and generalized regression neural networks and dynamic—gamma one-layer network and recurrent one-layer network] for prediction of diclofenac sodium (DS) release from drug-cationic surfactant-modified zeolites physical mixtures comprising different surfactant/drug molar ratio (0.2–2.5) was performed. The inputs for ANNs trainings were surfactant/drug molar ratios, that is, drug loadings in the drug-modified zeolite mixtures, whereas the outputs were percents of drug release in predetermined time points during drug release test (8 h). The obtained results revealed that MLP showed the highest correlation between experimental and predicted drug release. The safety of both natural and cationic surfactant-modified zeolite as a potential excipient was confirmed in an acute toxicity testing during 72h. DS (1.5, 5, 10, mg/kg, p.o.) as well as DS-modified zeolites mixtures produced a significant dose-dependent reduction of the rat paw edema induced by proinflammatory agent carrageenan. DS antiedematous effect was intensified and prolonged significantly by modified zeolite. These results could suggest the potential improvement in the treatment of inflammation by DS-modified zeolite mixtures. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 103:1085–1094, 2014</description><identifier>ISSN: 0022-3549</identifier><identifier>EISSN: 1520-6017</identifier><identifier>DOI: 10.1002/jps.23869</identifier><identifier>PMID: 24496922</identifier><identifier>CODEN: JPMSAE</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>adsorption ; Animals ; Anti-Inflammatory Agents, Non-Steroidal - administration &amp; dosage ; Anti-Inflammatory Agents, Non-Steroidal - therapeutic use ; antiedematous activity ; cationic surfactant ; clinoptilolite ; Diclofenac - administration &amp; dosage ; Diclofenac - therapeutic use ; diclofenac sodium ; dissolution ; dose-response ; Drug Carriers - chemistry ; Drug Carriers - toxicity ; Edema - drug therapy ; excipient ; in silico modeling ; Male ; Mice ; Models, Chemical ; neural networks ; Neural Networks (Computer) ; Rats ; Rats, Wistar ; Surface-Active Agents - chemistry ; Surface-Active Agents - toxicity ; Zeolites - chemistry ; Zeolites - toxicity</subject><ispartof>Journal of pharmaceutical sciences, 2014-04, Vol.103 (4), p.1085-1094</ispartof><rights>2014 Wiley Periodicals, Inc. and the American Pharmacists Association</rights><rights>2014 Wiley Periodicals, Inc. and the American Pharmacists Association.</rights><rights>Copyright © 2014 Wiley Periodicals, Inc., A Wiley Company</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4969-7b984970cd249afa4217236168fc1f0ea0d15d3eb82baef62e350f4d5a3e84b03</citedby><cites>FETCH-LOGICAL-c4969-7b984970cd249afa4217236168fc1f0ea0d15d3eb82baef62e350f4d5a3e84b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjps.23869$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjps.23869$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24496922$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Krajišnik, Danina</creatorcontrib><creatorcontrib>Stepanović-Petrović, Radica</creatorcontrib><creatorcontrib>Tomić, Maja</creatorcontrib><creatorcontrib>Micov, Ana</creatorcontrib><creatorcontrib>Ibrić, Svetlana</creatorcontrib><creatorcontrib>Milić, Jela</creatorcontrib><title>Application of Artificial Neural Networks in Prediction of Diclofenac Sodium Release From Drug-Modified Zeolites Physical Mixtures and Antiedematous Activity Assessment</title><title>Journal of pharmaceutical sciences</title><addtitle>J Pharm Sci</addtitle><description>In this study, utilization of artificial neural network (ANN) models [static—multilayer perceptron (MLP) and generalized regression neural networks and dynamic—gamma one-layer network and recurrent one-layer network] for prediction of diclofenac sodium (DS) release from drug-cationic surfactant-modified zeolites physical mixtures comprising different surfactant/drug molar ratio (0.2–2.5) was performed. The inputs for ANNs trainings were surfactant/drug molar ratios, that is, drug loadings in the drug-modified zeolite mixtures, whereas the outputs were percents of drug release in predetermined time points during drug release test (8 h). The obtained results revealed that MLP showed the highest correlation between experimental and predicted drug release. The safety of both natural and cationic surfactant-modified zeolite as a potential excipient was confirmed in an acute toxicity testing during 72h. DS (1.5, 5, 10, mg/kg, p.o.) as well as DS-modified zeolites mixtures produced a significant dose-dependent reduction of the rat paw edema induced by proinflammatory agent carrageenan. DS antiedematous effect was intensified and prolonged significantly by modified zeolite. These results could suggest the potential improvement in the treatment of inflammation by DS-modified zeolite mixtures. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 103:1085–1094, 2014</description><subject>adsorption</subject><subject>Animals</subject><subject>Anti-Inflammatory Agents, Non-Steroidal - administration &amp; dosage</subject><subject>Anti-Inflammatory Agents, Non-Steroidal - therapeutic use</subject><subject>antiedematous activity</subject><subject>cationic surfactant</subject><subject>clinoptilolite</subject><subject>Diclofenac - administration &amp; dosage</subject><subject>Diclofenac - therapeutic use</subject><subject>diclofenac sodium</subject><subject>dissolution</subject><subject>dose-response</subject><subject>Drug Carriers - chemistry</subject><subject>Drug Carriers - toxicity</subject><subject>Edema - drug therapy</subject><subject>excipient</subject><subject>in silico modeling</subject><subject>Male</subject><subject>Mice</subject><subject>Models, Chemical</subject><subject>neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Surface-Active Agents - chemistry</subject><subject>Surface-Active Agents - toxicity</subject><subject>Zeolites - chemistry</subject><subject>Zeolites - toxicity</subject><issn>0022-3549</issn><issn>1520-6017</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kctuFDEQRS0EIkNgwQ8gS2xg0Ylf_Vq2EsJDCYwIbNhYbrsMHrrbje1OmD_iM3EyGRYIViW5jm_dqovQU0qOKCHseDPHI8abqr2HVrRkpKgIre-jVe6xgpeiPUCPYtwQQipSlg_RAROirVrGVuhXN8-D0yo5P2FvcReSs047NeD3sITbkq59-B6xm_A6gHF6z546PXgLk9L40hu3jPgjDKAi4LPgR3walq_FRW5YBwZ_AT-4BBGvv21jHjjgC_czLSG_qMngbkqZglElv0Tc5RlXLm1xFyPEOMKUHqMHVg0RntzVQ_T57NWnkzfF-YfXb0-680LfrFTUfduItibaMNEqqwSjNeMVrRqrqSWgiKGl4dA3rFdgKwa8JFaYUnFoRE_4IXqx052D_7FATHJ0UcMwqAmyNUlLIfJ1K8Yy-vwvdOOXMGV3mSK1aDmnIlMvd5QOPsYAVs7BjSpsJSXyJj6Z45O38WX22Z3i0o9g_pD7vDJwvAOu3QDb_yvJd-vLvSTf_YB8tCsHQUbtYNI5yAA6SePdP4z8BkEOuKE</recordid><startdate>201404</startdate><enddate>201404</enddate><creator>Krajišnik, Danina</creator><creator>Stepanović-Petrović, Radica</creator><creator>Tomić, Maja</creator><creator>Micov, Ana</creator><creator>Ibrić, Svetlana</creator><creator>Milić, Jela</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>201404</creationdate><title>Application of Artificial Neural Networks in Prediction of Diclofenac Sodium Release From Drug-Modified Zeolites Physical Mixtures and Antiedematous Activity Assessment</title><author>Krajišnik, Danina ; Stepanović-Petrović, Radica ; Tomić, Maja ; Micov, Ana ; Ibrić, Svetlana ; Milić, Jela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4969-7b984970cd249afa4217236168fc1f0ea0d15d3eb82baef62e350f4d5a3e84b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>adsorption</topic><topic>Animals</topic><topic>Anti-Inflammatory Agents, Non-Steroidal - administration &amp; dosage</topic><topic>Anti-Inflammatory Agents, Non-Steroidal - therapeutic use</topic><topic>antiedematous activity</topic><topic>cationic surfactant</topic><topic>clinoptilolite</topic><topic>Diclofenac - administration &amp; dosage</topic><topic>Diclofenac - therapeutic use</topic><topic>diclofenac sodium</topic><topic>dissolution</topic><topic>dose-response</topic><topic>Drug Carriers - chemistry</topic><topic>Drug Carriers - toxicity</topic><topic>Edema - drug therapy</topic><topic>excipient</topic><topic>in silico modeling</topic><topic>Male</topic><topic>Mice</topic><topic>Models, Chemical</topic><topic>neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Surface-Active Agents - chemistry</topic><topic>Surface-Active Agents - toxicity</topic><topic>Zeolites - chemistry</topic><topic>Zeolites - toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krajišnik, Danina</creatorcontrib><creatorcontrib>Stepanović-Petrović, Radica</creatorcontrib><creatorcontrib>Tomić, Maja</creatorcontrib><creatorcontrib>Micov, Ana</creatorcontrib><creatorcontrib>Ibrić, Svetlana</creatorcontrib><creatorcontrib>Milić, Jela</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Journal of pharmaceutical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krajišnik, Danina</au><au>Stepanović-Petrović, Radica</au><au>Tomić, Maja</au><au>Micov, Ana</au><au>Ibrić, Svetlana</au><au>Milić, Jela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Artificial Neural Networks in Prediction of Diclofenac Sodium Release From Drug-Modified Zeolites Physical Mixtures and Antiedematous Activity Assessment</atitle><jtitle>Journal of pharmaceutical sciences</jtitle><addtitle>J Pharm Sci</addtitle><date>2014-04</date><risdate>2014</risdate><volume>103</volume><issue>4</issue><spage>1085</spage><epage>1094</epage><pages>1085-1094</pages><issn>0022-3549</issn><eissn>1520-6017</eissn><coden>JPMSAE</coden><abstract>In this study, utilization of artificial neural network (ANN) models [static—multilayer perceptron (MLP) and generalized regression neural networks and dynamic—gamma one-layer network and recurrent one-layer network] for prediction of diclofenac sodium (DS) release from drug-cationic surfactant-modified zeolites physical mixtures comprising different surfactant/drug molar ratio (0.2–2.5) was performed. The inputs for ANNs trainings were surfactant/drug molar ratios, that is, drug loadings in the drug-modified zeolite mixtures, whereas the outputs were percents of drug release in predetermined time points during drug release test (8 h). The obtained results revealed that MLP showed the highest correlation between experimental and predicted drug release. The safety of both natural and cationic surfactant-modified zeolite as a potential excipient was confirmed in an acute toxicity testing during 72h. DS (1.5, 5, 10, mg/kg, p.o.) as well as DS-modified zeolites mixtures produced a significant dose-dependent reduction of the rat paw edema induced by proinflammatory agent carrageenan. DS antiedematous effect was intensified and prolonged significantly by modified zeolite. These results could suggest the potential improvement in the treatment of inflammation by DS-modified zeolite mixtures. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 103:1085–1094, 2014</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24496922</pmid><doi>10.1002/jps.23869</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3549
ispartof Journal of pharmaceutical sciences, 2014-04, Vol.103 (4), p.1085-1094
issn 0022-3549
1520-6017
language eng
recordid cdi_proquest_miscellaneous_1544017622
source MEDLINE; Access via Wiley Online Library; Alma/SFX Local Collection
subjects adsorption
Animals
Anti-Inflammatory Agents, Non-Steroidal - administration & dosage
Anti-Inflammatory Agents, Non-Steroidal - therapeutic use
antiedematous activity
cationic surfactant
clinoptilolite
Diclofenac - administration & dosage
Diclofenac - therapeutic use
diclofenac sodium
dissolution
dose-response
Drug Carriers - chemistry
Drug Carriers - toxicity
Edema - drug therapy
excipient
in silico modeling
Male
Mice
Models, Chemical
neural networks
Neural Networks (Computer)
Rats
Rats, Wistar
Surface-Active Agents - chemistry
Surface-Active Agents - toxicity
Zeolites - chemistry
Zeolites - toxicity
title Application of Artificial Neural Networks in Prediction of Diclofenac Sodium Release From Drug-Modified Zeolites Physical Mixtures and Antiedematous Activity Assessment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A31%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Artificial%20Neural%20Networks%20in%20Prediction%20of%20Diclofenac%20Sodium%20Release%20From%20Drug-Modified%20Zeolites%20Physical%20Mixtures%20and%20Antiedematous%20Activity%20Assessment&rft.jtitle=Journal%20of%20pharmaceutical%20sciences&rft.au=Kraji%C5%A1nik,%20Danina&rft.date=2014-04&rft.volume=103&rft.issue=4&rft.spage=1085&rft.epage=1094&rft.pages=1085-1094&rft.issn=0022-3549&rft.eissn=1520-6017&rft.coden=JPMSAE&rft_id=info:doi/10.1002/jps.23869&rft_dat=%3Cproquest_cross%3E1544017622%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1507493314&rft_id=info:pmid/24496922&rft_els_id=S0022354915306250&rfr_iscdi=true