Application of Artificial Neural Networks in Prediction of Diclofenac Sodium Release From Drug-Modified Zeolites Physical Mixtures and Antiedematous Activity Assessment
In this study, utilization of artificial neural network (ANN) models [static—multilayer perceptron (MLP) and generalized regression neural networks and dynamic—gamma one-layer network and recurrent one-layer network] for prediction of diclofenac sodium (DS) release from drug-cationic surfactant-modi...
Gespeichert in:
Veröffentlicht in: | Journal of pharmaceutical sciences 2014-04, Vol.103 (4), p.1085-1094 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1094 |
---|---|
container_issue | 4 |
container_start_page | 1085 |
container_title | Journal of pharmaceutical sciences |
container_volume | 103 |
creator | Krajišnik, Danina Stepanović-Petrović, Radica Tomić, Maja Micov, Ana Ibrić, Svetlana Milić, Jela |
description | In this study, utilization of artificial neural network (ANN) models [static—multilayer perceptron (MLP) and generalized regression neural networks and dynamic—gamma one-layer network and recurrent one-layer network] for prediction of diclofenac sodium (DS) release from drug-cationic surfactant-modified zeolites physical mixtures comprising different surfactant/drug molar ratio (0.2–2.5) was performed. The inputs for ANNs trainings were surfactant/drug molar ratios, that is, drug loadings in the drug-modified zeolite mixtures, whereas the outputs were percents of drug release in predetermined time points during drug release test (8 h). The obtained results revealed that MLP showed the highest correlation between experimental and predicted drug release. The safety of both natural and cationic surfactant-modified zeolite as a potential excipient was confirmed in an acute toxicity testing during 72h. DS (1.5, 5, 10, mg/kg, p.o.) as well as DS-modified zeolites mixtures produced a significant dose-dependent reduction of the rat paw edema induced by proinflammatory agent carrageenan. DS antiedematous effect was intensified and prolonged significantly by modified zeolite. These results could suggest the potential improvement in the treatment of inflammation by DS-modified zeolite mixtures. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 103:1085–1094, 2014 |
doi_str_mv | 10.1002/jps.23869 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1544017622</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022354915306250</els_id><sourcerecordid>1544017622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4969-7b984970cd249afa4217236168fc1f0ea0d15d3eb82baef62e350f4d5a3e84b03</originalsourceid><addsrcrecordid>eNp1kctuFDEQRS0EIkNgwQ8gS2xg0Ylf_Vq2EsJDCYwIbNhYbrsMHrrbje1OmD_iM3EyGRYIViW5jm_dqovQU0qOKCHseDPHI8abqr2HVrRkpKgIre-jVe6xgpeiPUCPYtwQQipSlg_RAROirVrGVuhXN8-D0yo5P2FvcReSs047NeD3sITbkq59-B6xm_A6gHF6z546PXgLk9L40hu3jPgjDKAi4LPgR3walq_FRW5YBwZ_AT-4BBGvv21jHjjgC_czLSG_qMngbkqZglElv0Tc5RlXLm1xFyPEOMKUHqMHVg0RntzVQ_T57NWnkzfF-YfXb0-680LfrFTUfduItibaMNEqqwSjNeMVrRqrqSWgiKGl4dA3rFdgKwa8JFaYUnFoRE_4IXqx052D_7FATHJ0UcMwqAmyNUlLIfJ1K8Yy-vwvdOOXMGV3mSK1aDmnIlMvd5QOPsYAVs7BjSpsJSXyJj6Z45O38WX22Z3i0o9g_pD7vDJwvAOu3QDb_yvJd-vLvSTf_YB8tCsHQUbtYNI5yAA6SePdP4z8BkEOuKE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1507493314</pqid></control><display><type>article</type><title>Application of Artificial Neural Networks in Prediction of Diclofenac Sodium Release From Drug-Modified Zeolites Physical Mixtures and Antiedematous Activity Assessment</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>Alma/SFX Local Collection</source><creator>Krajišnik, Danina ; Stepanović-Petrović, Radica ; Tomić, Maja ; Micov, Ana ; Ibrić, Svetlana ; Milić, Jela</creator><creatorcontrib>Krajišnik, Danina ; Stepanović-Petrović, Radica ; Tomić, Maja ; Micov, Ana ; Ibrić, Svetlana ; Milić, Jela</creatorcontrib><description>In this study, utilization of artificial neural network (ANN) models [static—multilayer perceptron (MLP) and generalized regression neural networks and dynamic—gamma one-layer network and recurrent one-layer network] for prediction of diclofenac sodium (DS) release from drug-cationic surfactant-modified zeolites physical mixtures comprising different surfactant/drug molar ratio (0.2–2.5) was performed. The inputs for ANNs trainings were surfactant/drug molar ratios, that is, drug loadings in the drug-modified zeolite mixtures, whereas the outputs were percents of drug release in predetermined time points during drug release test (8 h). The obtained results revealed that MLP showed the highest correlation between experimental and predicted drug release. The safety of both natural and cationic surfactant-modified zeolite as a potential excipient was confirmed in an acute toxicity testing during 72h. DS (1.5, 5, 10, mg/kg, p.o.) as well as DS-modified zeolites mixtures produced a significant dose-dependent reduction of the rat paw edema induced by proinflammatory agent carrageenan. DS antiedematous effect was intensified and prolonged significantly by modified zeolite. These results could suggest the potential improvement in the treatment of inflammation by DS-modified zeolite mixtures. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 103:1085–1094, 2014</description><identifier>ISSN: 0022-3549</identifier><identifier>EISSN: 1520-6017</identifier><identifier>DOI: 10.1002/jps.23869</identifier><identifier>PMID: 24496922</identifier><identifier>CODEN: JPMSAE</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>adsorption ; Animals ; Anti-Inflammatory Agents, Non-Steroidal - administration & dosage ; Anti-Inflammatory Agents, Non-Steroidal - therapeutic use ; antiedematous activity ; cationic surfactant ; clinoptilolite ; Diclofenac - administration & dosage ; Diclofenac - therapeutic use ; diclofenac sodium ; dissolution ; dose-response ; Drug Carriers - chemistry ; Drug Carriers - toxicity ; Edema - drug therapy ; excipient ; in silico modeling ; Male ; Mice ; Models, Chemical ; neural networks ; Neural Networks (Computer) ; Rats ; Rats, Wistar ; Surface-Active Agents - chemistry ; Surface-Active Agents - toxicity ; Zeolites - chemistry ; Zeolites - toxicity</subject><ispartof>Journal of pharmaceutical sciences, 2014-04, Vol.103 (4), p.1085-1094</ispartof><rights>2014 Wiley Periodicals, Inc. and the American Pharmacists Association</rights><rights>2014 Wiley Periodicals, Inc. and the American Pharmacists Association.</rights><rights>Copyright © 2014 Wiley Periodicals, Inc., A Wiley Company</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4969-7b984970cd249afa4217236168fc1f0ea0d15d3eb82baef62e350f4d5a3e84b03</citedby><cites>FETCH-LOGICAL-c4969-7b984970cd249afa4217236168fc1f0ea0d15d3eb82baef62e350f4d5a3e84b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjps.23869$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjps.23869$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24496922$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Krajišnik, Danina</creatorcontrib><creatorcontrib>Stepanović-Petrović, Radica</creatorcontrib><creatorcontrib>Tomić, Maja</creatorcontrib><creatorcontrib>Micov, Ana</creatorcontrib><creatorcontrib>Ibrić, Svetlana</creatorcontrib><creatorcontrib>Milić, Jela</creatorcontrib><title>Application of Artificial Neural Networks in Prediction of Diclofenac Sodium Release From Drug-Modified Zeolites Physical Mixtures and Antiedematous Activity Assessment</title><title>Journal of pharmaceutical sciences</title><addtitle>J Pharm Sci</addtitle><description>In this study, utilization of artificial neural network (ANN) models [static—multilayer perceptron (MLP) and generalized regression neural networks and dynamic—gamma one-layer network and recurrent one-layer network] for prediction of diclofenac sodium (DS) release from drug-cationic surfactant-modified zeolites physical mixtures comprising different surfactant/drug molar ratio (0.2–2.5) was performed. The inputs for ANNs trainings were surfactant/drug molar ratios, that is, drug loadings in the drug-modified zeolite mixtures, whereas the outputs were percents of drug release in predetermined time points during drug release test (8 h). The obtained results revealed that MLP showed the highest correlation between experimental and predicted drug release. The safety of both natural and cationic surfactant-modified zeolite as a potential excipient was confirmed in an acute toxicity testing during 72h. DS (1.5, 5, 10, mg/kg, p.o.) as well as DS-modified zeolites mixtures produced a significant dose-dependent reduction of the rat paw edema induced by proinflammatory agent carrageenan. DS antiedematous effect was intensified and prolonged significantly by modified zeolite. These results could suggest the potential improvement in the treatment of inflammation by DS-modified zeolite mixtures. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 103:1085–1094, 2014</description><subject>adsorption</subject><subject>Animals</subject><subject>Anti-Inflammatory Agents, Non-Steroidal - administration & dosage</subject><subject>Anti-Inflammatory Agents, Non-Steroidal - therapeutic use</subject><subject>antiedematous activity</subject><subject>cationic surfactant</subject><subject>clinoptilolite</subject><subject>Diclofenac - administration & dosage</subject><subject>Diclofenac - therapeutic use</subject><subject>diclofenac sodium</subject><subject>dissolution</subject><subject>dose-response</subject><subject>Drug Carriers - chemistry</subject><subject>Drug Carriers - toxicity</subject><subject>Edema - drug therapy</subject><subject>excipient</subject><subject>in silico modeling</subject><subject>Male</subject><subject>Mice</subject><subject>Models, Chemical</subject><subject>neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Surface-Active Agents - chemistry</subject><subject>Surface-Active Agents - toxicity</subject><subject>Zeolites - chemistry</subject><subject>Zeolites - toxicity</subject><issn>0022-3549</issn><issn>1520-6017</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kctuFDEQRS0EIkNgwQ8gS2xg0Ylf_Vq2EsJDCYwIbNhYbrsMHrrbje1OmD_iM3EyGRYIViW5jm_dqovQU0qOKCHseDPHI8abqr2HVrRkpKgIre-jVe6xgpeiPUCPYtwQQipSlg_RAROirVrGVuhXN8-D0yo5P2FvcReSs047NeD3sITbkq59-B6xm_A6gHF6z546PXgLk9L40hu3jPgjDKAi4LPgR3walq_FRW5YBwZ_AT-4BBGvv21jHjjgC_czLSG_qMngbkqZglElv0Tc5RlXLm1xFyPEOMKUHqMHVg0RntzVQ_T57NWnkzfF-YfXb0-680LfrFTUfduItibaMNEqqwSjNeMVrRqrqSWgiKGl4dA3rFdgKwa8JFaYUnFoRE_4IXqx052D_7FATHJ0UcMwqAmyNUlLIfJ1K8Yy-vwvdOOXMGV3mSK1aDmnIlMvd5QOPsYAVs7BjSpsJSXyJj6Z45O38WX22Z3i0o9g_pD7vDJwvAOu3QDb_yvJd-vLvSTf_YB8tCsHQUbtYNI5yAA6SePdP4z8BkEOuKE</recordid><startdate>201404</startdate><enddate>201404</enddate><creator>Krajišnik, Danina</creator><creator>Stepanović-Petrović, Radica</creator><creator>Tomić, Maja</creator><creator>Micov, Ana</creator><creator>Ibrić, Svetlana</creator><creator>Milić, Jela</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>201404</creationdate><title>Application of Artificial Neural Networks in Prediction of Diclofenac Sodium Release From Drug-Modified Zeolites Physical Mixtures and Antiedematous Activity Assessment</title><author>Krajišnik, Danina ; Stepanović-Petrović, Radica ; Tomić, Maja ; Micov, Ana ; Ibrić, Svetlana ; Milić, Jela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4969-7b984970cd249afa4217236168fc1f0ea0d15d3eb82baef62e350f4d5a3e84b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>adsorption</topic><topic>Animals</topic><topic>Anti-Inflammatory Agents, Non-Steroidal - administration & dosage</topic><topic>Anti-Inflammatory Agents, Non-Steroidal - therapeutic use</topic><topic>antiedematous activity</topic><topic>cationic surfactant</topic><topic>clinoptilolite</topic><topic>Diclofenac - administration & dosage</topic><topic>Diclofenac - therapeutic use</topic><topic>diclofenac sodium</topic><topic>dissolution</topic><topic>dose-response</topic><topic>Drug Carriers - chemistry</topic><topic>Drug Carriers - toxicity</topic><topic>Edema - drug therapy</topic><topic>excipient</topic><topic>in silico modeling</topic><topic>Male</topic><topic>Mice</topic><topic>Models, Chemical</topic><topic>neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Surface-Active Agents - chemistry</topic><topic>Surface-Active Agents - toxicity</topic><topic>Zeolites - chemistry</topic><topic>Zeolites - toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krajišnik, Danina</creatorcontrib><creatorcontrib>Stepanović-Petrović, Radica</creatorcontrib><creatorcontrib>Tomić, Maja</creatorcontrib><creatorcontrib>Micov, Ana</creatorcontrib><creatorcontrib>Ibrić, Svetlana</creatorcontrib><creatorcontrib>Milić, Jela</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Journal of pharmaceutical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krajišnik, Danina</au><au>Stepanović-Petrović, Radica</au><au>Tomić, Maja</au><au>Micov, Ana</au><au>Ibrić, Svetlana</au><au>Milić, Jela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Artificial Neural Networks in Prediction of Diclofenac Sodium Release From Drug-Modified Zeolites Physical Mixtures and Antiedematous Activity Assessment</atitle><jtitle>Journal of pharmaceutical sciences</jtitle><addtitle>J Pharm Sci</addtitle><date>2014-04</date><risdate>2014</risdate><volume>103</volume><issue>4</issue><spage>1085</spage><epage>1094</epage><pages>1085-1094</pages><issn>0022-3549</issn><eissn>1520-6017</eissn><coden>JPMSAE</coden><abstract>In this study, utilization of artificial neural network (ANN) models [static—multilayer perceptron (MLP) and generalized regression neural networks and dynamic—gamma one-layer network and recurrent one-layer network] for prediction of diclofenac sodium (DS) release from drug-cationic surfactant-modified zeolites physical mixtures comprising different surfactant/drug molar ratio (0.2–2.5) was performed. The inputs for ANNs trainings were surfactant/drug molar ratios, that is, drug loadings in the drug-modified zeolite mixtures, whereas the outputs were percents of drug release in predetermined time points during drug release test (8 h). The obtained results revealed that MLP showed the highest correlation between experimental and predicted drug release. The safety of both natural and cationic surfactant-modified zeolite as a potential excipient was confirmed in an acute toxicity testing during 72h. DS (1.5, 5, 10, mg/kg, p.o.) as well as DS-modified zeolites mixtures produced a significant dose-dependent reduction of the rat paw edema induced by proinflammatory agent carrageenan. DS antiedematous effect was intensified and prolonged significantly by modified zeolite. These results could suggest the potential improvement in the treatment of inflammation by DS-modified zeolite mixtures. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 103:1085–1094, 2014</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24496922</pmid><doi>10.1002/jps.23869</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3549 |
ispartof | Journal of pharmaceutical sciences, 2014-04, Vol.103 (4), p.1085-1094 |
issn | 0022-3549 1520-6017 |
language | eng |
recordid | cdi_proquest_miscellaneous_1544017622 |
source | MEDLINE; Access via Wiley Online Library; Alma/SFX Local Collection |
subjects | adsorption Animals Anti-Inflammatory Agents, Non-Steroidal - administration & dosage Anti-Inflammatory Agents, Non-Steroidal - therapeutic use antiedematous activity cationic surfactant clinoptilolite Diclofenac - administration & dosage Diclofenac - therapeutic use diclofenac sodium dissolution dose-response Drug Carriers - chemistry Drug Carriers - toxicity Edema - drug therapy excipient in silico modeling Male Mice Models, Chemical neural networks Neural Networks (Computer) Rats Rats, Wistar Surface-Active Agents - chemistry Surface-Active Agents - toxicity Zeolites - chemistry Zeolites - toxicity |
title | Application of Artificial Neural Networks in Prediction of Diclofenac Sodium Release From Drug-Modified Zeolites Physical Mixtures and Antiedematous Activity Assessment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A31%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Artificial%20Neural%20Networks%20in%20Prediction%20of%20Diclofenac%20Sodium%20Release%20From%20Drug-Modified%20Zeolites%20Physical%20Mixtures%20and%20Antiedematous%20Activity%20Assessment&rft.jtitle=Journal%20of%20pharmaceutical%20sciences&rft.au=Kraji%C5%A1nik,%20Danina&rft.date=2014-04&rft.volume=103&rft.issue=4&rft.spage=1085&rft.epage=1094&rft.pages=1085-1094&rft.issn=0022-3549&rft.eissn=1520-6017&rft.coden=JPMSAE&rft_id=info:doi/10.1002/jps.23869&rft_dat=%3Cproquest_cross%3E1544017622%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1507493314&rft_id=info:pmid/24496922&rft_els_id=S0022354915306250&rfr_iscdi=true |