Amphibians over the edge: silent extinction risk of Data Deficient species
AIM: To apply mathematical models to the task of predicting extinction risk for species currently listed as ‘Data Deficient’ (DD) by the International Union for the Conservation of Nature (IUCN). We demonstrate this approach by applying it globally to amphibians, the vertebrate group recognized as b...
Gespeichert in:
Veröffentlicht in: | Diversity & distributions 2014-07, Vol.20 (7), p.837-846 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 846 |
---|---|
container_issue | 7 |
container_start_page | 837 |
container_title | Diversity & distributions |
container_volume | 20 |
creator | Howard, Sam D Bickford, David P Ferrier, Simon |
description | AIM: To apply mathematical models to the task of predicting extinction risk for species currently listed as ‘Data Deficient’ (DD) by the International Union for the Conservation of Nature (IUCN). We demonstrate this approach by applying it globally to amphibians, the vertebrate group recognized as being most extinction threatened and having the largest proportion of DD species. We combine model predictions with current extinction risk knowledge to highlight regions of greatest disparity between known and predicted risk, where potential species extinctions may be overlooked. LOCATION: Global. METHODS: Using global amphibian distribution data obtained from the IUCN and species trait data, we apply machine learning randomForest models to predict extinction risk of DD species from life history traits, environmental variables and habitat loss. These models are trained using data for species that have been assigned to an extinction risk category (other than DD) by the IUCN. We then combine predictions for DD species with IUCN assessment data in a GIS framework to highlight anomalies between current knowledge of amphibian extinction risk and our model predictions. RESULTS: We show that DD amphibian species are likely to be more threatened with extinction than their fully assessed counterparts. Regions in South America, central Africa and North Asia are particularly at risk due to lack of species knowledge and higher extinction risk than currently recognized. MAIN CONCLUSIONS: Application of predictive models ranking regions and species most in need of primary research allows prioritization of limited resources in an informed context, minimizing risk of unnoticed species' extinction. |
doi_str_mv | 10.1111/ddi.12218 |
format | Article |
fullrecord | <record><control><sourceid>jstor_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_1543999413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24033247</jstor_id><sourcerecordid>24033247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5458-ba5a3bb2b20a8bd4ce4f08b085287835c52cf84e902f1bec5b98202b9abbc4363</originalsourceid><addsrcrecordid>eNp1kV9PFTEQxTdEExB94AMYmxgSeVhop3-2yxvhCqJXCUHEt6btbaGXvdtLu1fh21tcxMTEeZlJzm9OJmeqaovgXVJqbzYLuwSAyLVqg7AGaiYYPCszFaJuORHr1Yuc5xhjSjlsVB8PFsvrYILuM4o_XELDtUNuduX2UQ6d6wfk7obQ2yHEHqWQb1D0aKIHjSbOBxseiLx0Zcgvq-ded9m9euyb1cXR-6-HH-rp6fHJ4cG0tpxxWRvNNTUGDGAtzYxZxzyWBksOspGUWw7WS-ZaDJ4YZ7lpJWAwrTbGMiroZvVu9F2meLtyeVCLkK3rOt27uMqKcEbbtmWEFvTtP-g8rlJfrisU5QQaEKxQOyNlU8w5Oa-WKSx0ulcEq4dUVUlV_U61sNuPjjpb3fmkexvy0wJIgWUrSeH2Ru5nSfH-_4ZqMjn54_x63JjnIaa_jqx8ClhT9HrUQx7c3ZOu040SDW24uvxyrL59h0t89nmqPhX-zch7HZW-Kr9TF-eACcOYUMa5oL8ABeOmGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1535127264</pqid></control><display><type>article</type><title>Amphibians over the edge: silent extinction risk of Data Deficient species</title><source>Wiley Online Library Open Access</source><creator>Howard, Sam D ; Bickford, David P ; Ferrier, Simon</creator><contributor>Ferrier, Simon</contributor><creatorcontrib>Howard, Sam D ; Bickford, David P ; Ferrier, Simon ; Ferrier, Simon</creatorcontrib><description>AIM: To apply mathematical models to the task of predicting extinction risk for species currently listed as ‘Data Deficient’ (DD) by the International Union for the Conservation of Nature (IUCN). We demonstrate this approach by applying it globally to amphibians, the vertebrate group recognized as being most extinction threatened and having the largest proportion of DD species. We combine model predictions with current extinction risk knowledge to highlight regions of greatest disparity between known and predicted risk, where potential species extinctions may be overlooked. LOCATION: Global. METHODS: Using global amphibian distribution data obtained from the IUCN and species trait data, we apply machine learning randomForest models to predict extinction risk of DD species from life history traits, environmental variables and habitat loss. These models are trained using data for species that have been assigned to an extinction risk category (other than DD) by the IUCN. We then combine predictions for DD species with IUCN assessment data in a GIS framework to highlight anomalies between current knowledge of amphibian extinction risk and our model predictions. RESULTS: We show that DD amphibian species are likely to be more threatened with extinction than their fully assessed counterparts. Regions in South America, central Africa and North Asia are particularly at risk due to lack of species knowledge and higher extinction risk than currently recognized. MAIN CONCLUSIONS: Application of predictive models ranking regions and species most in need of primary research allows prioritization of limited resources in an informed context, minimizing risk of unnoticed species' extinction.</description><identifier>ISSN: 1366-9516</identifier><identifier>EISSN: 1472-4642</identifier><identifier>DOI: 10.1111/ddi.12218</identifier><language>eng</language><publisher>Oxford: Blackwell Science</publisher><subject>Amphibia. Reptilia ; amphibians ; Animal and plant ecology ; Animal, plant and microbial ecology ; Anura ; Applied ecology ; artificial intelligence ; Biodiversity ; BIODIVERSITY RESEARCH ; Biological and medical sciences ; Caudata ; Conservation biology ; Endangered & extinct species ; environmental factors ; extinction ; Fundamental and applied biological sciences. Psychology ; General aspects ; geographic information systems ; Gymnophiona ; habitat destruction ; IUCN Redlist ; life history ; machine learning ; Mathematical models ; prediction ; predictive model ; prioritization ; Reptiles & amphibians ; risk ; Synecology ; Vertebrates: general zoology, morphology, phylogeny, systematics, cytogenetics, geographical distribution</subject><ispartof>Diversity & distributions, 2014-07, Vol.20 (7), p.837-846</ispartof><rights>Copyright © 2014 John Wiley & Sons Ltd.</rights><rights>2014 John Wiley & Sons Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2014 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5458-ba5a3bb2b20a8bd4ce4f08b085287835c52cf84e902f1bec5b98202b9abbc4363</citedby><cites>FETCH-LOGICAL-c5458-ba5a3bb2b20a8bd4ce4f08b085287835c52cf84e902f1bec5b98202b9abbc4363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24033247$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24033247$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,11541,27901,27902,45550,45551,46027,46451,57992,58225</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fddi.12218$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28608981$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Ferrier, Simon</contributor><creatorcontrib>Howard, Sam D</creatorcontrib><creatorcontrib>Bickford, David P</creatorcontrib><creatorcontrib>Ferrier, Simon</creatorcontrib><title>Amphibians over the edge: silent extinction risk of Data Deficient species</title><title>Diversity & distributions</title><addtitle>Diversity Distrib</addtitle><description>AIM: To apply mathematical models to the task of predicting extinction risk for species currently listed as ‘Data Deficient’ (DD) by the International Union for the Conservation of Nature (IUCN). We demonstrate this approach by applying it globally to amphibians, the vertebrate group recognized as being most extinction threatened and having the largest proportion of DD species. We combine model predictions with current extinction risk knowledge to highlight regions of greatest disparity between known and predicted risk, where potential species extinctions may be overlooked. LOCATION: Global. METHODS: Using global amphibian distribution data obtained from the IUCN and species trait data, we apply machine learning randomForest models to predict extinction risk of DD species from life history traits, environmental variables and habitat loss. These models are trained using data for species that have been assigned to an extinction risk category (other than DD) by the IUCN. We then combine predictions for DD species with IUCN assessment data in a GIS framework to highlight anomalies between current knowledge of amphibian extinction risk and our model predictions. RESULTS: We show that DD amphibian species are likely to be more threatened with extinction than their fully assessed counterparts. Regions in South America, central Africa and North Asia are particularly at risk due to lack of species knowledge and higher extinction risk than currently recognized. MAIN CONCLUSIONS: Application of predictive models ranking regions and species most in need of primary research allows prioritization of limited resources in an informed context, minimizing risk of unnoticed species' extinction.</description><subject>Amphibia. Reptilia</subject><subject>amphibians</subject><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Anura</subject><subject>Applied ecology</subject><subject>artificial intelligence</subject><subject>Biodiversity</subject><subject>BIODIVERSITY RESEARCH</subject><subject>Biological and medical sciences</subject><subject>Caudata</subject><subject>Conservation biology</subject><subject>Endangered & extinct species</subject><subject>environmental factors</subject><subject>extinction</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>geographic information systems</subject><subject>Gymnophiona</subject><subject>habitat destruction</subject><subject>IUCN Redlist</subject><subject>life history</subject><subject>machine learning</subject><subject>Mathematical models</subject><subject>prediction</subject><subject>predictive model</subject><subject>prioritization</subject><subject>Reptiles & amphibians</subject><subject>risk</subject><subject>Synecology</subject><subject>Vertebrates: general zoology, morphology, phylogeny, systematics, cytogenetics, geographical distribution</subject><issn>1366-9516</issn><issn>1472-4642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kV9PFTEQxTdEExB94AMYmxgSeVhop3-2yxvhCqJXCUHEt6btbaGXvdtLu1fh21tcxMTEeZlJzm9OJmeqaovgXVJqbzYLuwSAyLVqg7AGaiYYPCszFaJuORHr1Yuc5xhjSjlsVB8PFsvrYILuM4o_XELDtUNuduX2UQ6d6wfk7obQ2yHEHqWQb1D0aKIHjSbOBxseiLx0Zcgvq-ded9m9euyb1cXR-6-HH-rp6fHJ4cG0tpxxWRvNNTUGDGAtzYxZxzyWBksOspGUWw7WS-ZaDJ4YZ7lpJWAwrTbGMiroZvVu9F2meLtyeVCLkK3rOt27uMqKcEbbtmWEFvTtP-g8rlJfrisU5QQaEKxQOyNlU8w5Oa-WKSx0ulcEq4dUVUlV_U61sNuPjjpb3fmkexvy0wJIgWUrSeH2Ru5nSfH-_4ZqMjn54_x63JjnIaa_jqx8ClhT9HrUQx7c3ZOu040SDW24uvxyrL59h0t89nmqPhX-zch7HZW-Kr9TF-eACcOYUMa5oL8ABeOmGg</recordid><startdate>201407</startdate><enddate>201407</enddate><creator>Howard, Sam D</creator><creator>Bickford, David P</creator><creator>Ferrier, Simon</creator><general>Blackwell Science</general><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons Ltd</general><general>Blackwell</general><general>John Wiley & Sons, Inc</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>C1K</scope><scope>M7N</scope><scope>7ST</scope><scope>7U1</scope><scope>7U2</scope><scope>7U6</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope></search><sort><creationdate>201407</creationdate><title>Amphibians over the edge: silent extinction risk of Data Deficient species</title><author>Howard, Sam D ; Bickford, David P ; Ferrier, Simon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5458-ba5a3bb2b20a8bd4ce4f08b085287835c52cf84e902f1bec5b98202b9abbc4363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amphibia. Reptilia</topic><topic>amphibians</topic><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Anura</topic><topic>Applied ecology</topic><topic>artificial intelligence</topic><topic>Biodiversity</topic><topic>BIODIVERSITY RESEARCH</topic><topic>Biological and medical sciences</topic><topic>Caudata</topic><topic>Conservation biology</topic><topic>Endangered & extinct species</topic><topic>environmental factors</topic><topic>extinction</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>geographic information systems</topic><topic>Gymnophiona</topic><topic>habitat destruction</topic><topic>IUCN Redlist</topic><topic>life history</topic><topic>machine learning</topic><topic>Mathematical models</topic><topic>prediction</topic><topic>predictive model</topic><topic>prioritization</topic><topic>Reptiles & amphibians</topic><topic>risk</topic><topic>Synecology</topic><topic>Vertebrates: general zoology, morphology, phylogeny, systematics, cytogenetics, geographical distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Howard, Sam D</creatorcontrib><creatorcontrib>Bickford, David P</creatorcontrib><creatorcontrib>Ferrier, Simon</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Environment Abstracts</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Sustainability Science Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Diversity & distributions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Howard, Sam D</au><au>Bickford, David P</au><au>Ferrier, Simon</au><au>Ferrier, Simon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Amphibians over the edge: silent extinction risk of Data Deficient species</atitle><jtitle>Diversity & distributions</jtitle><addtitle>Diversity Distrib</addtitle><date>2014-07</date><risdate>2014</risdate><volume>20</volume><issue>7</issue><spage>837</spage><epage>846</epage><pages>837-846</pages><issn>1366-9516</issn><eissn>1472-4642</eissn><abstract>AIM: To apply mathematical models to the task of predicting extinction risk for species currently listed as ‘Data Deficient’ (DD) by the International Union for the Conservation of Nature (IUCN). We demonstrate this approach by applying it globally to amphibians, the vertebrate group recognized as being most extinction threatened and having the largest proportion of DD species. We combine model predictions with current extinction risk knowledge to highlight regions of greatest disparity between known and predicted risk, where potential species extinctions may be overlooked. LOCATION: Global. METHODS: Using global amphibian distribution data obtained from the IUCN and species trait data, we apply machine learning randomForest models to predict extinction risk of DD species from life history traits, environmental variables and habitat loss. These models are trained using data for species that have been assigned to an extinction risk category (other than DD) by the IUCN. We then combine predictions for DD species with IUCN assessment data in a GIS framework to highlight anomalies between current knowledge of amphibian extinction risk and our model predictions. RESULTS: We show that DD amphibian species are likely to be more threatened with extinction than their fully assessed counterparts. Regions in South America, central Africa and North Asia are particularly at risk due to lack of species knowledge and higher extinction risk than currently recognized. MAIN CONCLUSIONS: Application of predictive models ranking regions and species most in need of primary research allows prioritization of limited resources in an informed context, minimizing risk of unnoticed species' extinction.</abstract><cop>Oxford</cop><pub>Blackwell Science</pub><doi>10.1111/ddi.12218</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1366-9516 |
ispartof | Diversity & distributions, 2014-07, Vol.20 (7), p.837-846 |
issn | 1366-9516 1472-4642 |
language | eng |
recordid | cdi_proquest_miscellaneous_1543999413 |
source | Wiley Online Library Open Access |
subjects | Amphibia. Reptilia amphibians Animal and plant ecology Animal, plant and microbial ecology Anura Applied ecology artificial intelligence Biodiversity BIODIVERSITY RESEARCH Biological and medical sciences Caudata Conservation biology Endangered & extinct species environmental factors extinction Fundamental and applied biological sciences. Psychology General aspects geographic information systems Gymnophiona habitat destruction IUCN Redlist life history machine learning Mathematical models prediction predictive model prioritization Reptiles & amphibians risk Synecology Vertebrates: general zoology, morphology, phylogeny, systematics, cytogenetics, geographical distribution |
title | Amphibians over the edge: silent extinction risk of Data Deficient species |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A48%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Amphibians%20over%20the%20edge:%20silent%20extinction%20risk%20of%20Data%20Deficient%20species&rft.jtitle=Diversity%20&%20distributions&rft.au=Howard,%20Sam%20D&rft.date=2014-07&rft.volume=20&rft.issue=7&rft.spage=837&rft.epage=846&rft.pages=837-846&rft.issn=1366-9516&rft.eissn=1472-4642&rft_id=info:doi/10.1111/ddi.12218&rft_dat=%3Cjstor_24P%3E24033247%3C/jstor_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1535127264&rft_id=info:pmid/&rft_jstor_id=24033247&rfr_iscdi=true |