Concept and simulation study of a novel localization method for robotic endoscopic capsules using multiple positron emission markers
Purpose: Over the last decade, wireless capsule endoscope has been the tool of choice for noninvasive inspection of the gastrointestinal tract, especially in the small intestine. However, the latest clinical products have not been equipped with a sufficiently accurate localization system which makes...
Gespeichert in:
Veröffentlicht in: | Medical physics (Lancaster) 2014-07, Vol.41 (7), p.072501-n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 7 |
container_start_page | 072501 |
container_title | Medical physics (Lancaster) |
container_volume | 41 |
creator | Than, Trung Duc Alici, Gursel Harvey, Steven Zhou, Hao Li, Weihua |
description | Purpose:
Over the last decade, wireless capsule endoscope has been the tool of choice for noninvasive inspection of the gastrointestinal tract, especially in the small intestine. However, the latest clinical products have not been equipped with a sufficiently accurate localization system which makes it difficult to determine the location of intestinal abnormalities, and to apply follow-up interventions such as biopsy or drug delivery. In this paper, the authors present a novel localization method based on tracking three positron emission markers embedded inside an endoscopic capsule.
Methods:
Three spherical22Na markers with diameters of less than 1 mm are embedded in the cover of the capsule. Gamma ray detectors are arranged around a patient body to detect coincidence gamma rays emitted from the three markers. The position of each marker can then be estimated using the collected data by the authors’ tracking algorithm which consists of four consecutive steps: a method to remove corrupted data, an initialization method, a clustering method based on the Fuzzy C-means clustering algorithm, and a failure prediction method.
Results:
The tracking algorithm has been implemented inMATLAB utilizing simulation data generated from the Geant4 Application for Emission Tomography toolkit. The results show that this localization method can achieve real-time tracking with an average position error of less than 0.4 mm and an average orientation error of less than 2°.
Conclusions:
The authors conclude that this study has proven the feasibility and potential of the proposed technique in effectively determining the position and orientation of a robotic endoscopic capsule. |
doi_str_mv | 10.1118/1.4881316 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_miscellaneous_1543280885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1543280885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3876-85b639561648e882f4e1a57223cad69b11a104ce1e0d86989905dcbee3ab67a13</originalsourceid><addsrcrecordid>eNp9kU-LFDEQxYMo7rh68AtIwIsIvaaSdCZ9lGH9Ayt60HNIJ9VuNNNpO-mV8ewHN7M9ihc9VUH96lHvFSGPgV0AgH4BF1JrEKDukA2XW9FIzrq7ZMNYJxsuWXtGHuT8hTGmRMvukzMuO91JJjfk5y6NDqdC7ehpDvsl2hLSSHNZ_IGmgVo6phuMNCZnY_ixTvdYrpOnQ5rpnPpUgqM4-pRdmmrr7JSXiJkuOYyfadUsYYpIp5RDmes67kPOtzp2_opzfkjuDTZmfHSq5-TTq8uPuzfN1fvXb3cvrxon9FY1uu2V6FoFSmrUmg8SwbZbzoWzXnU9gAUmHQIyr1V12LHWux5R2F5tLYhz8nTVTbkEk10o6K5dGkd0xXAuoeYiKvVspaY5fVswF1PPdRijHTEt2UArBddM67aiT07o0u_Rm2kO1dLB_M63As0KfA8RD3_mwMzxcQbM6XHm3YdjqfzzlT8ed5v1v3f-B9-k-S_xyQ_iF3Xkp0k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1543280885</pqid></control><display><type>article</type><title>Concept and simulation study of a novel localization method for robotic endoscopic capsules using multiple positron emission markers</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Than, Trung Duc ; Alici, Gursel ; Harvey, Steven ; Zhou, Hao ; Li, Weihua</creator><creatorcontrib>Than, Trung Duc ; Alici, Gursel ; Harvey, Steven ; Zhou, Hao ; Li, Weihua</creatorcontrib><description>Purpose:
Over the last decade, wireless capsule endoscope has been the tool of choice for noninvasive inspection of the gastrointestinal tract, especially in the small intestine. However, the latest clinical products have not been equipped with a sufficiently accurate localization system which makes it difficult to determine the location of intestinal abnormalities, and to apply follow-up interventions such as biopsy or drug delivery. In this paper, the authors present a novel localization method based on tracking three positron emission markers embedded inside an endoscopic capsule.
Methods:
Three spherical22Na markers with diameters of less than 1 mm are embedded in the cover of the capsule. Gamma ray detectors are arranged around a patient body to detect coincidence gamma rays emitted from the three markers. The position of each marker can then be estimated using the collected data by the authors’ tracking algorithm which consists of four consecutive steps: a method to remove corrupted data, an initialization method, a clustering method based on the Fuzzy C-means clustering algorithm, and a failure prediction method.
Results:
The tracking algorithm has been implemented inMATLAB utilizing simulation data generated from the Geant4 Application for Emission Tomography toolkit. The results show that this localization method can achieve real-time tracking with an average position error of less than 0.4 mm and an average orientation error of less than 2°.
Conclusions:
The authors conclude that this study has proven the feasibility and potential of the proposed technique in effectively determining the position and orientation of a robotic endoscopic capsule.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1118/1.4881316</identifier><identifier>PMID: 24989404</identifier><identifier>CODEN: MPHYA6</identifier><language>eng</language><publisher>United States: American Association of Physicists in Medicine</publisher><subject>60 APPLIED LIFE SCIENCES ; ALGORITHMS ; Biological material, e.g. blood, urine; Haemocytometers ; Capsule Endoscopes ; Cluster Analysis ; Computer Simulation ; endoscopes ; Feasibility Studies ; fuzzy set theory ; GAMMA RADIATION ; Gamma ray detectors ; Gamma Rays ; Humans ; INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY ; Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor ; Isotopes ; localization ; Logic and set theory ; Magnetic fields ; mathematics computing ; Measuring half‐life of a radioactive substance ; medical robotics ; Models, Biological ; pattern clustering ; Phantoms, Imaging ; POSITRON COMPUTED TOMOGRAPHY ; positron emission markers ; positron emission tomography ; Positron emission tomography (PET) ; Positron-Emission Tomography - instrumentation ; Positron-Emission Tomography - methods ; Positrons ; Radiation Dosage ; robotic capsule ; Robotics ; Scintigraphy ; SMALL INTESTINE ; Sodium ; SODIUM 22 ; Sodium Radioisotopes ; Software ; SPHERICAL CONFIGURATION ; Time Factors ; Tissues ; tracking ; wireless capsule endoscope</subject><ispartof>Medical physics (Lancaster), 2014-07, Vol.41 (7), p.072501-n/a</ispartof><rights>American Association of Physicists in Medicine</rights><rights>2014 American Association of Physicists in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3876-85b639561648e882f4e1a57223cad69b11a104ce1e0d86989905dcbee3ab67a13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1118%2F1.4881316$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1118%2F1.4881316$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24989404$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22412493$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Than, Trung Duc</creatorcontrib><creatorcontrib>Alici, Gursel</creatorcontrib><creatorcontrib>Harvey, Steven</creatorcontrib><creatorcontrib>Zhou, Hao</creatorcontrib><creatorcontrib>Li, Weihua</creatorcontrib><title>Concept and simulation study of a novel localization method for robotic endoscopic capsules using multiple positron emission markers</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>Purpose:
Over the last decade, wireless capsule endoscope has been the tool of choice for noninvasive inspection of the gastrointestinal tract, especially in the small intestine. However, the latest clinical products have not been equipped with a sufficiently accurate localization system which makes it difficult to determine the location of intestinal abnormalities, and to apply follow-up interventions such as biopsy or drug delivery. In this paper, the authors present a novel localization method based on tracking three positron emission markers embedded inside an endoscopic capsule.
Methods:
Three spherical22Na markers with diameters of less than 1 mm are embedded in the cover of the capsule. Gamma ray detectors are arranged around a patient body to detect coincidence gamma rays emitted from the three markers. The position of each marker can then be estimated using the collected data by the authors’ tracking algorithm which consists of four consecutive steps: a method to remove corrupted data, an initialization method, a clustering method based on the Fuzzy C-means clustering algorithm, and a failure prediction method.
Results:
The tracking algorithm has been implemented inMATLAB utilizing simulation data generated from the Geant4 Application for Emission Tomography toolkit. The results show that this localization method can achieve real-time tracking with an average position error of less than 0.4 mm and an average orientation error of less than 2°.
Conclusions:
The authors conclude that this study has proven the feasibility and potential of the proposed technique in effectively determining the position and orientation of a robotic endoscopic capsule.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>ALGORITHMS</subject><subject>Biological material, e.g. blood, urine; Haemocytometers</subject><subject>Capsule Endoscopes</subject><subject>Cluster Analysis</subject><subject>Computer Simulation</subject><subject>endoscopes</subject><subject>Feasibility Studies</subject><subject>fuzzy set theory</subject><subject>GAMMA RADIATION</subject><subject>Gamma ray detectors</subject><subject>Gamma Rays</subject><subject>Humans</subject><subject>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</subject><subject>Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor</subject><subject>Isotopes</subject><subject>localization</subject><subject>Logic and set theory</subject><subject>Magnetic fields</subject><subject>mathematics computing</subject><subject>Measuring half‐life of a radioactive substance</subject><subject>medical robotics</subject><subject>Models, Biological</subject><subject>pattern clustering</subject><subject>Phantoms, Imaging</subject><subject>POSITRON COMPUTED TOMOGRAPHY</subject><subject>positron emission markers</subject><subject>positron emission tomography</subject><subject>Positron emission tomography (PET)</subject><subject>Positron-Emission Tomography - instrumentation</subject><subject>Positron-Emission Tomography - methods</subject><subject>Positrons</subject><subject>Radiation Dosage</subject><subject>robotic capsule</subject><subject>Robotics</subject><subject>Scintigraphy</subject><subject>SMALL INTESTINE</subject><subject>Sodium</subject><subject>SODIUM 22</subject><subject>Sodium Radioisotopes</subject><subject>Software</subject><subject>SPHERICAL CONFIGURATION</subject><subject>Time Factors</subject><subject>Tissues</subject><subject>tracking</subject><subject>wireless capsule endoscope</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU-LFDEQxYMo7rh68AtIwIsIvaaSdCZ9lGH9Ayt60HNIJ9VuNNNpO-mV8ewHN7M9ihc9VUH96lHvFSGPgV0AgH4BF1JrEKDukA2XW9FIzrq7ZMNYJxsuWXtGHuT8hTGmRMvukzMuO91JJjfk5y6NDqdC7ehpDvsl2hLSSHNZ_IGmgVo6phuMNCZnY_ixTvdYrpOnQ5rpnPpUgqM4-pRdmmrr7JSXiJkuOYyfadUsYYpIp5RDmes67kPOtzp2_opzfkjuDTZmfHSq5-TTq8uPuzfN1fvXb3cvrxon9FY1uu2V6FoFSmrUmg8SwbZbzoWzXnU9gAUmHQIyr1V12LHWux5R2F5tLYhz8nTVTbkEk10o6K5dGkd0xXAuoeYiKvVspaY5fVswF1PPdRijHTEt2UArBddM67aiT07o0u_Rm2kO1dLB_M63As0KfA8RD3_mwMzxcQbM6XHm3YdjqfzzlT8ed5v1v3f-B9-k-S_xyQ_iF3Xkp0k</recordid><startdate>201407</startdate><enddate>201407</enddate><creator>Than, Trung Duc</creator><creator>Alici, Gursel</creator><creator>Harvey, Steven</creator><creator>Zhou, Hao</creator><creator>Li, Weihua</creator><general>American Association of Physicists in Medicine</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>201407</creationdate><title>Concept and simulation study of a novel localization method for robotic endoscopic capsules using multiple positron emission markers</title><author>Than, Trung Duc ; Alici, Gursel ; Harvey, Steven ; Zhou, Hao ; Li, Weihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3876-85b639561648e882f4e1a57223cad69b11a104ce1e0d86989905dcbee3ab67a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>ALGORITHMS</topic><topic>Biological material, e.g. blood, urine; Haemocytometers</topic><topic>Capsule Endoscopes</topic><topic>Cluster Analysis</topic><topic>Computer Simulation</topic><topic>endoscopes</topic><topic>Feasibility Studies</topic><topic>fuzzy set theory</topic><topic>GAMMA RADIATION</topic><topic>Gamma ray detectors</topic><topic>Gamma Rays</topic><topic>Humans</topic><topic>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</topic><topic>Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor</topic><topic>Isotopes</topic><topic>localization</topic><topic>Logic and set theory</topic><topic>Magnetic fields</topic><topic>mathematics computing</topic><topic>Measuring half‐life of a radioactive substance</topic><topic>medical robotics</topic><topic>Models, Biological</topic><topic>pattern clustering</topic><topic>Phantoms, Imaging</topic><topic>POSITRON COMPUTED TOMOGRAPHY</topic><topic>positron emission markers</topic><topic>positron emission tomography</topic><topic>Positron emission tomography (PET)</topic><topic>Positron-Emission Tomography - instrumentation</topic><topic>Positron-Emission Tomography - methods</topic><topic>Positrons</topic><topic>Radiation Dosage</topic><topic>robotic capsule</topic><topic>Robotics</topic><topic>Scintigraphy</topic><topic>SMALL INTESTINE</topic><topic>Sodium</topic><topic>SODIUM 22</topic><topic>Sodium Radioisotopes</topic><topic>Software</topic><topic>SPHERICAL CONFIGURATION</topic><topic>Time Factors</topic><topic>Tissues</topic><topic>tracking</topic><topic>wireless capsule endoscope</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Than, Trung Duc</creatorcontrib><creatorcontrib>Alici, Gursel</creatorcontrib><creatorcontrib>Harvey, Steven</creatorcontrib><creatorcontrib>Zhou, Hao</creatorcontrib><creatorcontrib>Li, Weihua</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Than, Trung Duc</au><au>Alici, Gursel</au><au>Harvey, Steven</au><au>Zhou, Hao</au><au>Li, Weihua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Concept and simulation study of a novel localization method for robotic endoscopic capsules using multiple positron emission markers</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2014-07</date><risdate>2014</risdate><volume>41</volume><issue>7</issue><spage>072501</spage><epage>n/a</epage><pages>072501-n/a</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><coden>MPHYA6</coden><abstract>Purpose:
Over the last decade, wireless capsule endoscope has been the tool of choice for noninvasive inspection of the gastrointestinal tract, especially in the small intestine. However, the latest clinical products have not been equipped with a sufficiently accurate localization system which makes it difficult to determine the location of intestinal abnormalities, and to apply follow-up interventions such as biopsy or drug delivery. In this paper, the authors present a novel localization method based on tracking three positron emission markers embedded inside an endoscopic capsule.
Methods:
Three spherical22Na markers with diameters of less than 1 mm are embedded in the cover of the capsule. Gamma ray detectors are arranged around a patient body to detect coincidence gamma rays emitted from the three markers. The position of each marker can then be estimated using the collected data by the authors’ tracking algorithm which consists of four consecutive steps: a method to remove corrupted data, an initialization method, a clustering method based on the Fuzzy C-means clustering algorithm, and a failure prediction method.
Results:
The tracking algorithm has been implemented inMATLAB utilizing simulation data generated from the Geant4 Application for Emission Tomography toolkit. The results show that this localization method can achieve real-time tracking with an average position error of less than 0.4 mm and an average orientation error of less than 2°.
Conclusions:
The authors conclude that this study has proven the feasibility and potential of the proposed technique in effectively determining the position and orientation of a robotic endoscopic capsule.</abstract><cop>United States</cop><pub>American Association of Physicists in Medicine</pub><pmid>24989404</pmid><doi>10.1118/1.4881316</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-2405 |
ispartof | Medical physics (Lancaster), 2014-07, Vol.41 (7), p.072501-n/a |
issn | 0094-2405 2473-4209 |
language | eng |
recordid | cdi_proquest_miscellaneous_1543280885 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection |
subjects | 60 APPLIED LIFE SCIENCES ALGORITHMS Biological material, e.g. blood, urine Haemocytometers Capsule Endoscopes Cluster Analysis Computer Simulation endoscopes Feasibility Studies fuzzy set theory GAMMA RADIATION Gamma ray detectors Gamma Rays Humans INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes Illuminating arrangements therefor Isotopes localization Logic and set theory Magnetic fields mathematics computing Measuring half‐life of a radioactive substance medical robotics Models, Biological pattern clustering Phantoms, Imaging POSITRON COMPUTED TOMOGRAPHY positron emission markers positron emission tomography Positron emission tomography (PET) Positron-Emission Tomography - instrumentation Positron-Emission Tomography - methods Positrons Radiation Dosage robotic capsule Robotics Scintigraphy SMALL INTESTINE Sodium SODIUM 22 Sodium Radioisotopes Software SPHERICAL CONFIGURATION Time Factors Tissues tracking wireless capsule endoscope |
title | Concept and simulation study of a novel localization method for robotic endoscopic capsules using multiple positron emission markers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T03%3A51%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Concept%20and%20simulation%20study%20of%20a%20novel%20localization%20method%20for%20robotic%20endoscopic%20capsules%20using%20multiple%20positron%20emission%20markers&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Than,%20Trung%20Duc&rft.date=2014-07&rft.volume=41&rft.issue=7&rft.spage=072501&rft.epage=n/a&rft.pages=072501-n/a&rft.issn=0094-2405&rft.eissn=2473-4209&rft.coden=MPHYA6&rft_id=info:doi/10.1118/1.4881316&rft_dat=%3Cproquest_scita%3E1543280885%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1543280885&rft_id=info:pmid/24989404&rfr_iscdi=true |