Concept and simulation study of a novel localization method for robotic endoscopic capsules using multiple positron emission markers

Purpose: Over the last decade, wireless capsule endoscope has been the tool of choice for noninvasive inspection of the gastrointestinal tract, especially in the small intestine. However, the latest clinical products have not been equipped with a sufficiently accurate localization system which makes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical physics (Lancaster) 2014-07, Vol.41 (7), p.072501-n/a
Hauptverfasser: Than, Trung Duc, Alici, Gursel, Harvey, Steven, Zhou, Hao, Li, Weihua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 7
container_start_page 072501
container_title Medical physics (Lancaster)
container_volume 41
creator Than, Trung Duc
Alici, Gursel
Harvey, Steven
Zhou, Hao
Li, Weihua
description Purpose: Over the last decade, wireless capsule endoscope has been the tool of choice for noninvasive inspection of the gastrointestinal tract, especially in the small intestine. However, the latest clinical products have not been equipped with a sufficiently accurate localization system which makes it difficult to determine the location of intestinal abnormalities, and to apply follow-up interventions such as biopsy or drug delivery. In this paper, the authors present a novel localization method based on tracking three positron emission markers embedded inside an endoscopic capsule. Methods: Three spherical22Na markers with diameters of less than 1 mm are embedded in the cover of the capsule. Gamma ray detectors are arranged around a patient body to detect coincidence gamma rays emitted from the three markers. The position of each marker can then be estimated using the collected data by the authors’ tracking algorithm which consists of four consecutive steps: a method to remove corrupted data, an initialization method, a clustering method based on the Fuzzy C-means clustering algorithm, and a failure prediction method. Results: The tracking algorithm has been implemented inMATLAB utilizing simulation data generated from the Geant4 Application for Emission Tomography toolkit. The results show that this localization method can achieve real-time tracking with an average position error of less than 0.4 mm and an average orientation error of less than 2°. Conclusions: The authors conclude that this study has proven the feasibility and potential of the proposed technique in effectively determining the position and orientation of a robotic endoscopic capsule.
doi_str_mv 10.1118/1.4881316
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_miscellaneous_1543280885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1543280885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3876-85b639561648e882f4e1a57223cad69b11a104ce1e0d86989905dcbee3ab67a13</originalsourceid><addsrcrecordid>eNp9kU-LFDEQxYMo7rh68AtIwIsIvaaSdCZ9lGH9Ayt60HNIJ9VuNNNpO-mV8ewHN7M9ihc9VUH96lHvFSGPgV0AgH4BF1JrEKDukA2XW9FIzrq7ZMNYJxsuWXtGHuT8hTGmRMvukzMuO91JJjfk5y6NDqdC7ehpDvsl2hLSSHNZ_IGmgVo6phuMNCZnY_ixTvdYrpOnQ5rpnPpUgqM4-pRdmmrr7JSXiJkuOYyfadUsYYpIp5RDmes67kPOtzp2_opzfkjuDTZmfHSq5-TTq8uPuzfN1fvXb3cvrxon9FY1uu2V6FoFSmrUmg8SwbZbzoWzXnU9gAUmHQIyr1V12LHWux5R2F5tLYhz8nTVTbkEk10o6K5dGkd0xXAuoeYiKvVspaY5fVswF1PPdRijHTEt2UArBddM67aiT07o0u_Rm2kO1dLB_M63As0KfA8RD3_mwMzxcQbM6XHm3YdjqfzzlT8ed5v1v3f-B9-k-S_xyQ_iF3Xkp0k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1543280885</pqid></control><display><type>article</type><title>Concept and simulation study of a novel localization method for robotic endoscopic capsules using multiple positron emission markers</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Than, Trung Duc ; Alici, Gursel ; Harvey, Steven ; Zhou, Hao ; Li, Weihua</creator><creatorcontrib>Than, Trung Duc ; Alici, Gursel ; Harvey, Steven ; Zhou, Hao ; Li, Weihua</creatorcontrib><description>Purpose: Over the last decade, wireless capsule endoscope has been the tool of choice for noninvasive inspection of the gastrointestinal tract, especially in the small intestine. However, the latest clinical products have not been equipped with a sufficiently accurate localization system which makes it difficult to determine the location of intestinal abnormalities, and to apply follow-up interventions such as biopsy or drug delivery. In this paper, the authors present a novel localization method based on tracking three positron emission markers embedded inside an endoscopic capsule. Methods: Three spherical22Na markers with diameters of less than 1 mm are embedded in the cover of the capsule. Gamma ray detectors are arranged around a patient body to detect coincidence gamma rays emitted from the three markers. The position of each marker can then be estimated using the collected data by the authors’ tracking algorithm which consists of four consecutive steps: a method to remove corrupted data, an initialization method, a clustering method based on the Fuzzy C-means clustering algorithm, and a failure prediction method. Results: The tracking algorithm has been implemented inMATLAB utilizing simulation data generated from the Geant4 Application for Emission Tomography toolkit. The results show that this localization method can achieve real-time tracking with an average position error of less than 0.4 mm and an average orientation error of less than 2°. Conclusions: The authors conclude that this study has proven the feasibility and potential of the proposed technique in effectively determining the position and orientation of a robotic endoscopic capsule.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1118/1.4881316</identifier><identifier>PMID: 24989404</identifier><identifier>CODEN: MPHYA6</identifier><language>eng</language><publisher>United States: American Association of Physicists in Medicine</publisher><subject>60 APPLIED LIFE SCIENCES ; ALGORITHMS ; Biological material, e.g. blood, urine; Haemocytometers ; Capsule Endoscopes ; Cluster Analysis ; Computer Simulation ; endoscopes ; Feasibility Studies ; fuzzy set theory ; GAMMA RADIATION ; Gamma ray detectors ; Gamma Rays ; Humans ; INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY ; Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor ; Isotopes ; localization ; Logic and set theory ; Magnetic fields ; mathematics computing ; Measuring half‐life of a radioactive substance ; medical robotics ; Models, Biological ; pattern clustering ; Phantoms, Imaging ; POSITRON COMPUTED TOMOGRAPHY ; positron emission markers ; positron emission tomography ; Positron emission tomography (PET) ; Positron-Emission Tomography - instrumentation ; Positron-Emission Tomography - methods ; Positrons ; Radiation Dosage ; robotic capsule ; Robotics ; Scintigraphy ; SMALL INTESTINE ; Sodium ; SODIUM 22 ; Sodium Radioisotopes ; Software ; SPHERICAL CONFIGURATION ; Time Factors ; Tissues ; tracking ; wireless capsule endoscope</subject><ispartof>Medical physics (Lancaster), 2014-07, Vol.41 (7), p.072501-n/a</ispartof><rights>American Association of Physicists in Medicine</rights><rights>2014 American Association of Physicists in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3876-85b639561648e882f4e1a57223cad69b11a104ce1e0d86989905dcbee3ab67a13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1118%2F1.4881316$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1118%2F1.4881316$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24989404$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22412493$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Than, Trung Duc</creatorcontrib><creatorcontrib>Alici, Gursel</creatorcontrib><creatorcontrib>Harvey, Steven</creatorcontrib><creatorcontrib>Zhou, Hao</creatorcontrib><creatorcontrib>Li, Weihua</creatorcontrib><title>Concept and simulation study of a novel localization method for robotic endoscopic capsules using multiple positron emission markers</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>Purpose: Over the last decade, wireless capsule endoscope has been the tool of choice for noninvasive inspection of the gastrointestinal tract, especially in the small intestine. However, the latest clinical products have not been equipped with a sufficiently accurate localization system which makes it difficult to determine the location of intestinal abnormalities, and to apply follow-up interventions such as biopsy or drug delivery. In this paper, the authors present a novel localization method based on tracking three positron emission markers embedded inside an endoscopic capsule. Methods: Three spherical22Na markers with diameters of less than 1 mm are embedded in the cover of the capsule. Gamma ray detectors are arranged around a patient body to detect coincidence gamma rays emitted from the three markers. The position of each marker can then be estimated using the collected data by the authors’ tracking algorithm which consists of four consecutive steps: a method to remove corrupted data, an initialization method, a clustering method based on the Fuzzy C-means clustering algorithm, and a failure prediction method. Results: The tracking algorithm has been implemented inMATLAB utilizing simulation data generated from the Geant4 Application for Emission Tomography toolkit. The results show that this localization method can achieve real-time tracking with an average position error of less than 0.4 mm and an average orientation error of less than 2°. Conclusions: The authors conclude that this study has proven the feasibility and potential of the proposed technique in effectively determining the position and orientation of a robotic endoscopic capsule.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>ALGORITHMS</subject><subject>Biological material, e.g. blood, urine; Haemocytometers</subject><subject>Capsule Endoscopes</subject><subject>Cluster Analysis</subject><subject>Computer Simulation</subject><subject>endoscopes</subject><subject>Feasibility Studies</subject><subject>fuzzy set theory</subject><subject>GAMMA RADIATION</subject><subject>Gamma ray detectors</subject><subject>Gamma Rays</subject><subject>Humans</subject><subject>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</subject><subject>Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor</subject><subject>Isotopes</subject><subject>localization</subject><subject>Logic and set theory</subject><subject>Magnetic fields</subject><subject>mathematics computing</subject><subject>Measuring half‐life of a radioactive substance</subject><subject>medical robotics</subject><subject>Models, Biological</subject><subject>pattern clustering</subject><subject>Phantoms, Imaging</subject><subject>POSITRON COMPUTED TOMOGRAPHY</subject><subject>positron emission markers</subject><subject>positron emission tomography</subject><subject>Positron emission tomography (PET)</subject><subject>Positron-Emission Tomography - instrumentation</subject><subject>Positron-Emission Tomography - methods</subject><subject>Positrons</subject><subject>Radiation Dosage</subject><subject>robotic capsule</subject><subject>Robotics</subject><subject>Scintigraphy</subject><subject>SMALL INTESTINE</subject><subject>Sodium</subject><subject>SODIUM 22</subject><subject>Sodium Radioisotopes</subject><subject>Software</subject><subject>SPHERICAL CONFIGURATION</subject><subject>Time Factors</subject><subject>Tissues</subject><subject>tracking</subject><subject>wireless capsule endoscope</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU-LFDEQxYMo7rh68AtIwIsIvaaSdCZ9lGH9Ayt60HNIJ9VuNNNpO-mV8ewHN7M9ihc9VUH96lHvFSGPgV0AgH4BF1JrEKDukA2XW9FIzrq7ZMNYJxsuWXtGHuT8hTGmRMvukzMuO91JJjfk5y6NDqdC7ehpDvsl2hLSSHNZ_IGmgVo6phuMNCZnY_ixTvdYrpOnQ5rpnPpUgqM4-pRdmmrr7JSXiJkuOYyfadUsYYpIp5RDmes67kPOtzp2_opzfkjuDTZmfHSq5-TTq8uPuzfN1fvXb3cvrxon9FY1uu2V6FoFSmrUmg8SwbZbzoWzXnU9gAUmHQIyr1V12LHWux5R2F5tLYhz8nTVTbkEk10o6K5dGkd0xXAuoeYiKvVspaY5fVswF1PPdRijHTEt2UArBddM67aiT07o0u_Rm2kO1dLB_M63As0KfA8RD3_mwMzxcQbM6XHm3YdjqfzzlT8ed5v1v3f-B9-k-S_xyQ_iF3Xkp0k</recordid><startdate>201407</startdate><enddate>201407</enddate><creator>Than, Trung Duc</creator><creator>Alici, Gursel</creator><creator>Harvey, Steven</creator><creator>Zhou, Hao</creator><creator>Li, Weihua</creator><general>American Association of Physicists in Medicine</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>201407</creationdate><title>Concept and simulation study of a novel localization method for robotic endoscopic capsules using multiple positron emission markers</title><author>Than, Trung Duc ; Alici, Gursel ; Harvey, Steven ; Zhou, Hao ; Li, Weihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3876-85b639561648e882f4e1a57223cad69b11a104ce1e0d86989905dcbee3ab67a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>ALGORITHMS</topic><topic>Biological material, e.g. blood, urine; Haemocytometers</topic><topic>Capsule Endoscopes</topic><topic>Cluster Analysis</topic><topic>Computer Simulation</topic><topic>endoscopes</topic><topic>Feasibility Studies</topic><topic>fuzzy set theory</topic><topic>GAMMA RADIATION</topic><topic>Gamma ray detectors</topic><topic>Gamma Rays</topic><topic>Humans</topic><topic>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</topic><topic>Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor</topic><topic>Isotopes</topic><topic>localization</topic><topic>Logic and set theory</topic><topic>Magnetic fields</topic><topic>mathematics computing</topic><topic>Measuring half‐life of a radioactive substance</topic><topic>medical robotics</topic><topic>Models, Biological</topic><topic>pattern clustering</topic><topic>Phantoms, Imaging</topic><topic>POSITRON COMPUTED TOMOGRAPHY</topic><topic>positron emission markers</topic><topic>positron emission tomography</topic><topic>Positron emission tomography (PET)</topic><topic>Positron-Emission Tomography - instrumentation</topic><topic>Positron-Emission Tomography - methods</topic><topic>Positrons</topic><topic>Radiation Dosage</topic><topic>robotic capsule</topic><topic>Robotics</topic><topic>Scintigraphy</topic><topic>SMALL INTESTINE</topic><topic>Sodium</topic><topic>SODIUM 22</topic><topic>Sodium Radioisotopes</topic><topic>Software</topic><topic>SPHERICAL CONFIGURATION</topic><topic>Time Factors</topic><topic>Tissues</topic><topic>tracking</topic><topic>wireless capsule endoscope</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Than, Trung Duc</creatorcontrib><creatorcontrib>Alici, Gursel</creatorcontrib><creatorcontrib>Harvey, Steven</creatorcontrib><creatorcontrib>Zhou, Hao</creatorcontrib><creatorcontrib>Li, Weihua</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Than, Trung Duc</au><au>Alici, Gursel</au><au>Harvey, Steven</au><au>Zhou, Hao</au><au>Li, Weihua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Concept and simulation study of a novel localization method for robotic endoscopic capsules using multiple positron emission markers</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2014-07</date><risdate>2014</risdate><volume>41</volume><issue>7</issue><spage>072501</spage><epage>n/a</epage><pages>072501-n/a</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><coden>MPHYA6</coden><abstract>Purpose: Over the last decade, wireless capsule endoscope has been the tool of choice for noninvasive inspection of the gastrointestinal tract, especially in the small intestine. However, the latest clinical products have not been equipped with a sufficiently accurate localization system which makes it difficult to determine the location of intestinal abnormalities, and to apply follow-up interventions such as biopsy or drug delivery. In this paper, the authors present a novel localization method based on tracking three positron emission markers embedded inside an endoscopic capsule. Methods: Three spherical22Na markers with diameters of less than 1 mm are embedded in the cover of the capsule. Gamma ray detectors are arranged around a patient body to detect coincidence gamma rays emitted from the three markers. The position of each marker can then be estimated using the collected data by the authors’ tracking algorithm which consists of four consecutive steps: a method to remove corrupted data, an initialization method, a clustering method based on the Fuzzy C-means clustering algorithm, and a failure prediction method. Results: The tracking algorithm has been implemented inMATLAB utilizing simulation data generated from the Geant4 Application for Emission Tomography toolkit. The results show that this localization method can achieve real-time tracking with an average position error of less than 0.4 mm and an average orientation error of less than 2°. Conclusions: The authors conclude that this study has proven the feasibility and potential of the proposed technique in effectively determining the position and orientation of a robotic endoscopic capsule.</abstract><cop>United States</cop><pub>American Association of Physicists in Medicine</pub><pmid>24989404</pmid><doi>10.1118/1.4881316</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-2405
ispartof Medical physics (Lancaster), 2014-07, Vol.41 (7), p.072501-n/a
issn 0094-2405
2473-4209
language eng
recordid cdi_proquest_miscellaneous_1543280885
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
subjects 60 APPLIED LIFE SCIENCES
ALGORITHMS
Biological material, e.g. blood, urine
Haemocytometers
Capsule Endoscopes
Cluster Analysis
Computer Simulation
endoscopes
Feasibility Studies
fuzzy set theory
GAMMA RADIATION
Gamma ray detectors
Gamma Rays
Humans
INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY
Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes
Illuminating arrangements therefor
Isotopes
localization
Logic and set theory
Magnetic fields
mathematics computing
Measuring half‐life of a radioactive substance
medical robotics
Models, Biological
pattern clustering
Phantoms, Imaging
POSITRON COMPUTED TOMOGRAPHY
positron emission markers
positron emission tomography
Positron emission tomography (PET)
Positron-Emission Tomography - instrumentation
Positron-Emission Tomography - methods
Positrons
Radiation Dosage
robotic capsule
Robotics
Scintigraphy
SMALL INTESTINE
Sodium
SODIUM 22
Sodium Radioisotopes
Software
SPHERICAL CONFIGURATION
Time Factors
Tissues
tracking
wireless capsule endoscope
title Concept and simulation study of a novel localization method for robotic endoscopic capsules using multiple positron emission markers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T03%3A51%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Concept%20and%20simulation%20study%20of%20a%20novel%20localization%20method%20for%20robotic%20endoscopic%20capsules%20using%20multiple%20positron%20emission%20markers&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Than,%20Trung%20Duc&rft.date=2014-07&rft.volume=41&rft.issue=7&rft.spage=072501&rft.epage=n/a&rft.pages=072501-n/a&rft.issn=0094-2405&rft.eissn=2473-4209&rft.coden=MPHYA6&rft_id=info:doi/10.1118/1.4881316&rft_dat=%3Cproquest_scita%3E1543280885%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1543280885&rft_id=info:pmid/24989404&rfr_iscdi=true