Reciprocal regulation of autophagy and dNTP pools in human cancer cells

Ribonucleotide reductase (RNR) plays a critical role in catalyzing the biosynthesis and maintaining the intracellular concentration of 4 deoxyribonucleoside triphosphates (dNTPs). Unbalanced or deficient dNTP pools cause serious genotoxic consequences. Autophagy is the process by which cytoplasmic c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Autophagy 2014-07, Vol.10 (7), p.1272-1284
Hauptverfasser: Chen, Wei, Zhang, Lisheng, Zhang, Keqiang, Zhou, Bingsen, Kuo, Mei-Ling, Hu, Shuya, Chen, Linling, Tang, Michelle, Chen, Yun-Ru, Yang, Lixin, Ann, David K, Yen, Yun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1284
container_issue 7
container_start_page 1272
container_title Autophagy
container_volume 10
creator Chen, Wei
Zhang, Lisheng
Zhang, Keqiang
Zhou, Bingsen
Kuo, Mei-Ling
Hu, Shuya
Chen, Linling
Tang, Michelle
Chen, Yun-Ru
Yang, Lixin
Ann, David K
Yen, Yun
description Ribonucleotide reductase (RNR) plays a critical role in catalyzing the biosynthesis and maintaining the intracellular concentration of 4 deoxyribonucleoside triphosphates (dNTPs). Unbalanced or deficient dNTP pools cause serious genotoxic consequences. Autophagy is the process by which cytoplasmic constituents are degraded in lysosomes to maintain cellular homeostasis and bioenergetics. However, the role of autophagy in regulating dNTP pools is not well understood. Herein, we reported that starvation- or rapamycin-induced autophagy was accompanied by a decrease in RNR activity and dNTP pools in human cancer cells. Furthermore, downregulation of the small subunit of RNR (RRM2) by siRNA or treatment with the RNR inhibitor hydroxyurea substantially induced autophagy. Conversely, cancer cells with abundant endogenous intracellular dNTPs or treated with dNTP precursors were less responsive to autophagy induction by rapamycin, suggesting that autophagy and dNTP pool levels are regulated through a negative feedback loop. Lastly, treatment with si-RRM2 caused an increase in MAP1LC3B, ATG5, BECN1, and ATG12 transcript abundance in xenografted Tu212 tumors in vivo. Together, our results revealed a previously unrecognized reciprocal regulation between dNTP pools and autophagy in cancer cells.
doi_str_mv 10.4161/auto.28954
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1543279465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1543279465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-6302c161b31c0661fd06c09e4ac704c91a1d66cdda9a1cf613364dacf3e22b203</originalsourceid><addsrcrecordid>eNptkMtqGzEUQEVpiFMnm35A0bIE7Ohtz6ZQQpoETBKKsxbXksZW0UhTaSbFf59x7ZoUspJAR0dXB6HPlEwFVfQK-i5N2byS4gM6o1KKyVxx-fG4Z7MR-lTKL0K4mlfsFI2YqIicM3GGbn8649ucDASc3boP0PkUcarxztpuYL3FEC22D8sn3KYUCvYRb_oGIjYQjcvYuBDKOTqpIRR3cVjH6PnHzfL6brJ4vL2__r6YGMFEN1GcMDPMvOLUEKVobYkypHICzIwIU1GgViljLVRATa0o50pYMDV3jK0Y4WP0be9t-1XjrHGxyxB0m30DeasTeP3_SfQbvU4vWgyXpWSD4OtBkNPv3pVON77svgDRpb5oKgVns0ooOaCXe9TkVEp29fEZSvSuvN410n_LD_CXt4Md0X-pB0DuAR_rlBv4k3KwuoNtSLnOQ0pfNH9H_ArPhpLD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1543279465</pqid></control><display><type>article</type><title>Reciprocal regulation of autophagy and dNTP pools in human cancer cells</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Chen, Wei ; Zhang, Lisheng ; Zhang, Keqiang ; Zhou, Bingsen ; Kuo, Mei-Ling ; Hu, Shuya ; Chen, Linling ; Tang, Michelle ; Chen, Yun-Ru ; Yang, Lixin ; Ann, David K ; Yen, Yun</creator><creatorcontrib>Chen, Wei ; Zhang, Lisheng ; Zhang, Keqiang ; Zhou, Bingsen ; Kuo, Mei-Ling ; Hu, Shuya ; Chen, Linling ; Tang, Michelle ; Chen, Yun-Ru ; Yang, Lixin ; Ann, David K ; Yen, Yun</creatorcontrib><description>Ribonucleotide reductase (RNR) plays a critical role in catalyzing the biosynthesis and maintaining the intracellular concentration of 4 deoxyribonucleoside triphosphates (dNTPs). Unbalanced or deficient dNTP pools cause serious genotoxic consequences. Autophagy is the process by which cytoplasmic constituents are degraded in lysosomes to maintain cellular homeostasis and bioenergetics. However, the role of autophagy in regulating dNTP pools is not well understood. Herein, we reported that starvation- or rapamycin-induced autophagy was accompanied by a decrease in RNR activity and dNTP pools in human cancer cells. Furthermore, downregulation of the small subunit of RNR (RRM2) by siRNA or treatment with the RNR inhibitor hydroxyurea substantially induced autophagy. Conversely, cancer cells with abundant endogenous intracellular dNTPs or treated with dNTP precursors were less responsive to autophagy induction by rapamycin, suggesting that autophagy and dNTP pool levels are regulated through a negative feedback loop. Lastly, treatment with si-RRM2 caused an increase in MAP1LC3B, ATG5, BECN1, and ATG12 transcript abundance in xenografted Tu212 tumors in vivo. Together, our results revealed a previously unrecognized reciprocal regulation between dNTP pools and autophagy in cancer cells.</description><identifier>ISSN: 1554-8627</identifier><identifier>EISSN: 1554-8635</identifier><identifier>DOI: 10.4161/auto.28954</identifier><identifier>PMID: 24905824</identifier><language>eng</language><publisher>United States: Taylor &amp; Francis</publisher><subject>Animals ; autophagy ; Autophagy - drug effects ; Basic Research Paper ; dNTP pools ; Gene Knockdown Techniques ; Humans ; Hydroxyurea - pharmacology ; Intracellular Space - drug effects ; Intracellular Space - metabolism ; Mice, Inbred NOD ; Mice, SCID ; Neoplasms - metabolism ; Neoplasms - pathology ; Nucleotides - metabolism ; rapamycin ; Ribonucleoside Diphosphate Reductase - metabolism ; ribonucleotide reductase ; RNA, Small Interfering - metabolism ; RRM2 ; Signal Transduction - drug effects ; Sirolimus - pharmacology ; Xenograft Model Antitumor Assays</subject><ispartof>Autophagy, 2014-07, Vol.10 (7), p.1272-1284</ispartof><rights>Copyright © 2014 Landes Bioscience 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-6302c161b31c0661fd06c09e4ac704c91a1d66cdda9a1cf613364dacf3e22b203</citedby><cites>FETCH-LOGICAL-c424t-6302c161b31c0661fd06c09e4ac704c91a1d66cdda9a1cf613364dacf3e22b203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4203552/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4203552/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24905824$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Zhang, Lisheng</creatorcontrib><creatorcontrib>Zhang, Keqiang</creatorcontrib><creatorcontrib>Zhou, Bingsen</creatorcontrib><creatorcontrib>Kuo, Mei-Ling</creatorcontrib><creatorcontrib>Hu, Shuya</creatorcontrib><creatorcontrib>Chen, Linling</creatorcontrib><creatorcontrib>Tang, Michelle</creatorcontrib><creatorcontrib>Chen, Yun-Ru</creatorcontrib><creatorcontrib>Yang, Lixin</creatorcontrib><creatorcontrib>Ann, David K</creatorcontrib><creatorcontrib>Yen, Yun</creatorcontrib><title>Reciprocal regulation of autophagy and dNTP pools in human cancer cells</title><title>Autophagy</title><addtitle>Autophagy</addtitle><description>Ribonucleotide reductase (RNR) plays a critical role in catalyzing the biosynthesis and maintaining the intracellular concentration of 4 deoxyribonucleoside triphosphates (dNTPs). Unbalanced or deficient dNTP pools cause serious genotoxic consequences. Autophagy is the process by which cytoplasmic constituents are degraded in lysosomes to maintain cellular homeostasis and bioenergetics. However, the role of autophagy in regulating dNTP pools is not well understood. Herein, we reported that starvation- or rapamycin-induced autophagy was accompanied by a decrease in RNR activity and dNTP pools in human cancer cells. Furthermore, downregulation of the small subunit of RNR (RRM2) by siRNA or treatment with the RNR inhibitor hydroxyurea substantially induced autophagy. Conversely, cancer cells with abundant endogenous intracellular dNTPs or treated with dNTP precursors were less responsive to autophagy induction by rapamycin, suggesting that autophagy and dNTP pool levels are regulated through a negative feedback loop. Lastly, treatment with si-RRM2 caused an increase in MAP1LC3B, ATG5, BECN1, and ATG12 transcript abundance in xenografted Tu212 tumors in vivo. Together, our results revealed a previously unrecognized reciprocal regulation between dNTP pools and autophagy in cancer cells.</description><subject>Animals</subject><subject>autophagy</subject><subject>Autophagy - drug effects</subject><subject>Basic Research Paper</subject><subject>dNTP pools</subject><subject>Gene Knockdown Techniques</subject><subject>Humans</subject><subject>Hydroxyurea - pharmacology</subject><subject>Intracellular Space - drug effects</subject><subject>Intracellular Space - metabolism</subject><subject>Mice, Inbred NOD</subject><subject>Mice, SCID</subject><subject>Neoplasms - metabolism</subject><subject>Neoplasms - pathology</subject><subject>Nucleotides - metabolism</subject><subject>rapamycin</subject><subject>Ribonucleoside Diphosphate Reductase - metabolism</subject><subject>ribonucleotide reductase</subject><subject>RNA, Small Interfering - metabolism</subject><subject>RRM2</subject><subject>Signal Transduction - drug effects</subject><subject>Sirolimus - pharmacology</subject><subject>Xenograft Model Antitumor Assays</subject><issn>1554-8627</issn><issn>1554-8635</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>EIF</sourceid><recordid>eNptkMtqGzEUQEVpiFMnm35A0bIE7Ohtz6ZQQpoETBKKsxbXksZW0UhTaSbFf59x7ZoUspJAR0dXB6HPlEwFVfQK-i5N2byS4gM6o1KKyVxx-fG4Z7MR-lTKL0K4mlfsFI2YqIicM3GGbn8649ucDASc3boP0PkUcarxztpuYL3FEC22D8sn3KYUCvYRb_oGIjYQjcvYuBDKOTqpIRR3cVjH6PnHzfL6brJ4vL2__r6YGMFEN1GcMDPMvOLUEKVobYkypHICzIwIU1GgViljLVRATa0o50pYMDV3jK0Y4WP0be9t-1XjrHGxyxB0m30DeasTeP3_SfQbvU4vWgyXpWSD4OtBkNPv3pVON77svgDRpb5oKgVns0ooOaCXe9TkVEp29fEZSvSuvN410n_LD_CXt4Md0X-pB0DuAR_rlBv4k3KwuoNtSLnOQ0pfNH9H_ArPhpLD</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Chen, Wei</creator><creator>Zhang, Lisheng</creator><creator>Zhang, Keqiang</creator><creator>Zhou, Bingsen</creator><creator>Kuo, Mei-Ling</creator><creator>Hu, Shuya</creator><creator>Chen, Linling</creator><creator>Tang, Michelle</creator><creator>Chen, Yun-Ru</creator><creator>Yang, Lixin</creator><creator>Ann, David K</creator><creator>Yen, Yun</creator><general>Taylor &amp; Francis</general><general>Landes Bioscience</general><scope>0YH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140701</creationdate><title>Reciprocal regulation of autophagy and dNTP pools in human cancer cells</title><author>Chen, Wei ; Zhang, Lisheng ; Zhang, Keqiang ; Zhou, Bingsen ; Kuo, Mei-Ling ; Hu, Shuya ; Chen, Linling ; Tang, Michelle ; Chen, Yun-Ru ; Yang, Lixin ; Ann, David K ; Yen, Yun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-6302c161b31c0661fd06c09e4ac704c91a1d66cdda9a1cf613364dacf3e22b203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>autophagy</topic><topic>Autophagy - drug effects</topic><topic>Basic Research Paper</topic><topic>dNTP pools</topic><topic>Gene Knockdown Techniques</topic><topic>Humans</topic><topic>Hydroxyurea - pharmacology</topic><topic>Intracellular Space - drug effects</topic><topic>Intracellular Space - metabolism</topic><topic>Mice, Inbred NOD</topic><topic>Mice, SCID</topic><topic>Neoplasms - metabolism</topic><topic>Neoplasms - pathology</topic><topic>Nucleotides - metabolism</topic><topic>rapamycin</topic><topic>Ribonucleoside Diphosphate Reductase - metabolism</topic><topic>ribonucleotide reductase</topic><topic>RNA, Small Interfering - metabolism</topic><topic>RRM2</topic><topic>Signal Transduction - drug effects</topic><topic>Sirolimus - pharmacology</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Zhang, Lisheng</creatorcontrib><creatorcontrib>Zhang, Keqiang</creatorcontrib><creatorcontrib>Zhou, Bingsen</creatorcontrib><creatorcontrib>Kuo, Mei-Ling</creatorcontrib><creatorcontrib>Hu, Shuya</creatorcontrib><creatorcontrib>Chen, Linling</creatorcontrib><creatorcontrib>Tang, Michelle</creatorcontrib><creatorcontrib>Chen, Yun-Ru</creatorcontrib><creatorcontrib>Yang, Lixin</creatorcontrib><creatorcontrib>Ann, David K</creatorcontrib><creatorcontrib>Yen, Yun</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Autophagy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Wei</au><au>Zhang, Lisheng</au><au>Zhang, Keqiang</au><au>Zhou, Bingsen</au><au>Kuo, Mei-Ling</au><au>Hu, Shuya</au><au>Chen, Linling</au><au>Tang, Michelle</au><au>Chen, Yun-Ru</au><au>Yang, Lixin</au><au>Ann, David K</au><au>Yen, Yun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reciprocal regulation of autophagy and dNTP pools in human cancer cells</atitle><jtitle>Autophagy</jtitle><addtitle>Autophagy</addtitle><date>2014-07-01</date><risdate>2014</risdate><volume>10</volume><issue>7</issue><spage>1272</spage><epage>1284</epage><pages>1272-1284</pages><issn>1554-8627</issn><eissn>1554-8635</eissn><abstract>Ribonucleotide reductase (RNR) plays a critical role in catalyzing the biosynthesis and maintaining the intracellular concentration of 4 deoxyribonucleoside triphosphates (dNTPs). Unbalanced or deficient dNTP pools cause serious genotoxic consequences. Autophagy is the process by which cytoplasmic constituents are degraded in lysosomes to maintain cellular homeostasis and bioenergetics. However, the role of autophagy in regulating dNTP pools is not well understood. Herein, we reported that starvation- or rapamycin-induced autophagy was accompanied by a decrease in RNR activity and dNTP pools in human cancer cells. Furthermore, downregulation of the small subunit of RNR (RRM2) by siRNA or treatment with the RNR inhibitor hydroxyurea substantially induced autophagy. Conversely, cancer cells with abundant endogenous intracellular dNTPs or treated with dNTP precursors were less responsive to autophagy induction by rapamycin, suggesting that autophagy and dNTP pool levels are regulated through a negative feedback loop. Lastly, treatment with si-RRM2 caused an increase in MAP1LC3B, ATG5, BECN1, and ATG12 transcript abundance in xenografted Tu212 tumors in vivo. Together, our results revealed a previously unrecognized reciprocal regulation between dNTP pools and autophagy in cancer cells.</abstract><cop>United States</cop><pub>Taylor &amp; Francis</pub><pmid>24905824</pmid><doi>10.4161/auto.28954</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1554-8627
ispartof Autophagy, 2014-07, Vol.10 (7), p.1272-1284
issn 1554-8627
1554-8635
language eng
recordid cdi_proquest_miscellaneous_1543279465
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Animals
autophagy
Autophagy - drug effects
Basic Research Paper
dNTP pools
Gene Knockdown Techniques
Humans
Hydroxyurea - pharmacology
Intracellular Space - drug effects
Intracellular Space - metabolism
Mice, Inbred NOD
Mice, SCID
Neoplasms - metabolism
Neoplasms - pathology
Nucleotides - metabolism
rapamycin
Ribonucleoside Diphosphate Reductase - metabolism
ribonucleotide reductase
RNA, Small Interfering - metabolism
RRM2
Signal Transduction - drug effects
Sirolimus - pharmacology
Xenograft Model Antitumor Assays
title Reciprocal regulation of autophagy and dNTP pools in human cancer cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A34%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reciprocal%20regulation%20of%20autophagy%20and%20dNTP%20pools%20in%20human%20cancer%20cells&rft.jtitle=Autophagy&rft.au=Chen,%20Wei&rft.date=2014-07-01&rft.volume=10&rft.issue=7&rft.spage=1272&rft.epage=1284&rft.pages=1272-1284&rft.issn=1554-8627&rft.eissn=1554-8635&rft_id=info:doi/10.4161/auto.28954&rft_dat=%3Cproquest_pubme%3E1543279465%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1543279465&rft_id=info:pmid/24905824&rfr_iscdi=true