Deep brain and cortical stimulation for epilepsy

Despite optimal medical treatment, including epilepsy surgery, many epilepsy patients have uncontrolled seizures. In the last decades, interest has grown in invasive intracranial neurostimulation as a treatment for these patients. Intracranial stimulation includes both deep brain stimulation (DBS) (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cochrane database of systematic reviews 2014-06 (6), p.CD008497-CD008497
Hauptverfasser: Sprengers, Mathieu, Vonck, Kristl, Carrette, Evelien, Marson, Anthony G, Boon, Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Despite optimal medical treatment, including epilepsy surgery, many epilepsy patients have uncontrolled seizures. In the last decades, interest has grown in invasive intracranial neurostimulation as a treatment for these patients. Intracranial stimulation includes both deep brain stimulation (DBS) (stimulation through depth electrodes) and cortical stimulation (subdural electrodes). To assess the efficacy, safety and tolerability of deep brain and cortical stimulation for refractory epilepsy based on randomized controlled trials. We searched PubMed (6 August 2013), the Cochrane Epilepsy Group Specialized Register (31 August 2013), Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2013, Issue 7 of 12) and reference lists of retrieved articles. We also contacted device manufacturers and other researchers in the field. No language restrictions were imposed. Randomized controlled trials (RCTs) comparing deep brain or cortical stimulation to sham stimulation, resective surgery or further treatment with antiepileptic drugs. Four review authors independently selected trials for inclusion. Two review authors independently extracted the relevant data and assessed trial quality and overall quality of evidence. The outcomes investigated were seizure freedom, responder rate, percentage seizure frequency reduction, adverse events, neuropsychological outcome and quality of life. If additional data were needed, the study investigators were contacted. Results were analysed and reported separately for different intracranial targets for reasons of clinical heterogeneity. Ten RCTs comparing one to three months of intracranial neurostimulation to sham stimulation were identified. One trial was on anterior thalamic DBS (n = 109; 109 treatment periods); two trials on centromedian thalamic DBS (n = 20; 40 treatment periods), but only one of the trials (n = 7; 14 treatment periods) reported sufficient information for inclusion in the quantitative meta-analysis; three trials on cerebellar stimulation (n = 22; 39 treatment periods); three trials on hippocampal DBS (n = 15; 21 treatment periods); and one trial on responsive ictal onset zone stimulation (n = 191; 191 treatment periods). Evidence of selective reporting was present in four trials and the possibility of a carryover effect complicating interpretation of the results could not be excluded in 4 cross-over trials without any washout period. Moderate-quality evidence could not demonstrate statisti
ISSN:1469-493X
DOI:10.1002/14651858.cd008497.pub2