Toward 10 meV Electron Energy-Loss Spectroscopy Resolution for Plasmonics
Energy resolution is one of the most important parameters in electron energy-loss spectroscopy. This is especially true for measurement of surface plasmon resonances, where high-energy resolution is crucial for resolving individual resonance peaks, in particular close to the zero-loss peak. In this...
Gespeichert in:
Veröffentlicht in: | Microscopy and microanalysis 2014-06, Vol.20 (3), p.767-778 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 778 |
---|---|
container_issue | 3 |
container_start_page | 767 |
container_title | Microscopy and microanalysis |
container_volume | 20 |
creator | Bellido, Edson P. Rossouw, David Botton, Gianluigi A. |
description | Energy resolution is one of the most important parameters in electron energy-loss spectroscopy. This is especially true for measurement of surface plasmon resonances, where high-energy resolution is crucial for resolving individual resonance peaks, in particular close to the zero-loss peak. In this work, we improve the energy resolution of electron energy-loss spectra of surface plasmon resonances, acquired with a monochromated beam in a scanning transmission electron microscope, by the use of the Richardson–Lucy deconvolution algorithm. We test the performance of the algorithm in a simulated spectrum and then apply it to experimental energy-loss spectra of a lithographically patterned silver nanorod. By reduction of the point spread function of the spectrum, we are able to identify low-energy surface plasmon peaks in spectra, more localized features, and higher contrast in surface plasmon energy-filtered maps. Thanks to the combination of a monochromated beam and the Richardson–Lucy algorithm, we improve the effective resolution down to 30 meV, and evidence of success up to 10 meV resolution for losses below 1 eV. We also propose, implement, and test two methods to limit the number of iterations in the algorithm. The first method is based on noise measurement and analysis, while in the second we monitor the change of slope in the deconvolved spectrum. |
doi_str_mv | 10.1017/S1431927614000609 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1542650605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S1431927614000609</cupid><sourcerecordid>3382321521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-6e55c9893a0f3522ed27ff2578173a183e3908c03eeb4b1f5a2ef0e4fb6ae2a73</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMobn78AG-k4I031Xw0TXMpY-pgoLjpbUnbk9HRNjVpkf17022KKF4lnPOcJzkvQhcE3xBMxO2CRIxIKmISYYxjLA_Q2Jd4mBDCD7d3Eg79ETpxbu0ZhkV8jEY0iiWOBB2j2dJ8KFsEBAc1vAXTCvLOmiaYNmBXm3BunAsW7bboctNughdwpuq70jPa2OC5Uq42TZm7M3SkVeXgfH-eotf76XLyGM6fHmaTu3mYcyy7MAbOc5lIprBmnFIoqNCacpEQwRRJGDCJkxwzgCzKiOaKgsYQ6SxWQJVgp-h6522tee_BdWlduhyqSjVgepcSHtGY-zS4R69-oWvT28b_bqBEwlgkByHZUbnf0VnQaWvLWtlNSnA65Jz-ydnPXO7NfVZD8T3xFawH2F6q6syWxQp-vP2v9hPBqoWz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1547833497</pqid></control><display><type>article</type><title>Toward 10 meV Electron Energy-Loss Spectroscopy Resolution for Plasmonics</title><source>Alma/SFX Local Collection</source><creator>Bellido, Edson P. ; Rossouw, David ; Botton, Gianluigi A.</creator><creatorcontrib>Bellido, Edson P. ; Rossouw, David ; Botton, Gianluigi A.</creatorcontrib><description>Energy resolution is one of the most important parameters in electron energy-loss spectroscopy. This is especially true for measurement of surface plasmon resonances, where high-energy resolution is crucial for resolving individual resonance peaks, in particular close to the zero-loss peak. In this work, we improve the energy resolution of electron energy-loss spectra of surface plasmon resonances, acquired with a monochromated beam in a scanning transmission electron microscope, by the use of the Richardson–Lucy deconvolution algorithm. We test the performance of the algorithm in a simulated spectrum and then apply it to experimental energy-loss spectra of a lithographically patterned silver nanorod. By reduction of the point spread function of the spectrum, we are able to identify low-energy surface plasmon peaks in spectra, more localized features, and higher contrast in surface plasmon energy-filtered maps. Thanks to the combination of a monochromated beam and the Richardson–Lucy algorithm, we improve the effective resolution down to 30 meV, and evidence of success up to 10 meV resolution for losses below 1 eV. We also propose, implement, and test two methods to limit the number of iterations in the algorithm. The first method is based on noise measurement and analysis, while in the second we monitor the change of slope in the deconvolved spectrum.</description><identifier>ISSN: 1431-9276</identifier><identifier>EISSN: 1435-8115</identifier><identifier>DOI: 10.1017/S1431927614000609</identifier><identifier>PMID: 24690472</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Algorithms ; Control algorithms ; EDGE Special Issue ; Energy ; Maximum entropy method ; Nanoparticles ; Noise control ; Rocket launches ; Sensors ; Silver ; Spectroscopy ; Spectrum analysis</subject><ispartof>Microscopy and microanalysis, 2014-06, Vol.20 (3), p.767-778</ispartof><rights>Microscopy Society of America 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-6e55c9893a0f3522ed27ff2578173a183e3908c03eeb4b1f5a2ef0e4fb6ae2a73</citedby><cites>FETCH-LOGICAL-c509t-6e55c9893a0f3522ed27ff2578173a183e3908c03eeb4b1f5a2ef0e4fb6ae2a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24690472$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bellido, Edson P.</creatorcontrib><creatorcontrib>Rossouw, David</creatorcontrib><creatorcontrib>Botton, Gianluigi A.</creatorcontrib><title>Toward 10 meV Electron Energy-Loss Spectroscopy Resolution for Plasmonics</title><title>Microscopy and microanalysis</title><addtitle>Microsc Microanal</addtitle><description>Energy resolution is one of the most important parameters in electron energy-loss spectroscopy. This is especially true for measurement of surface plasmon resonances, where high-energy resolution is crucial for resolving individual resonance peaks, in particular close to the zero-loss peak. In this work, we improve the energy resolution of electron energy-loss spectra of surface plasmon resonances, acquired with a monochromated beam in a scanning transmission electron microscope, by the use of the Richardson–Lucy deconvolution algorithm. We test the performance of the algorithm in a simulated spectrum and then apply it to experimental energy-loss spectra of a lithographically patterned silver nanorod. By reduction of the point spread function of the spectrum, we are able to identify low-energy surface plasmon peaks in spectra, more localized features, and higher contrast in surface plasmon energy-filtered maps. Thanks to the combination of a monochromated beam and the Richardson–Lucy algorithm, we improve the effective resolution down to 30 meV, and evidence of success up to 10 meV resolution for losses below 1 eV. We also propose, implement, and test two methods to limit the number of iterations in the algorithm. The first method is based on noise measurement and analysis, while in the second we monitor the change of slope in the deconvolved spectrum.</description><subject>Algorithms</subject><subject>Control algorithms</subject><subject>EDGE Special Issue</subject><subject>Energy</subject><subject>Maximum entropy method</subject><subject>Nanoparticles</subject><subject>Noise control</subject><subject>Rocket launches</subject><subject>Sensors</subject><subject>Silver</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><issn>1431-9276</issn><issn>1435-8115</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kF1LwzAUhoMobn78AG-k4I031Xw0TXMpY-pgoLjpbUnbk9HRNjVpkf17022KKF4lnPOcJzkvQhcE3xBMxO2CRIxIKmISYYxjLA_Q2Jd4mBDCD7d3Eg79ETpxbu0ZhkV8jEY0iiWOBB2j2dJ8KFsEBAc1vAXTCvLOmiaYNmBXm3BunAsW7bboctNughdwpuq70jPa2OC5Uq42TZm7M3SkVeXgfH-eotf76XLyGM6fHmaTu3mYcyy7MAbOc5lIprBmnFIoqNCacpEQwRRJGDCJkxwzgCzKiOaKgsYQ6SxWQJVgp-h6522tee_BdWlduhyqSjVgepcSHtGY-zS4R69-oWvT28b_bqBEwlgkByHZUbnf0VnQaWvLWtlNSnA65Jz-ydnPXO7NfVZD8T3xFawH2F6q6syWxQp-vP2v9hPBqoWz</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Bellido, Edson P.</creator><creator>Rossouw, David</creator><creator>Botton, Gianluigi A.</creator><general>Cambridge University Press</general><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>20140601</creationdate><title>Toward 10 meV Electron Energy-Loss Spectroscopy Resolution for Plasmonics</title><author>Bellido, Edson P. ; Rossouw, David ; Botton, Gianluigi A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-6e55c9893a0f3522ed27ff2578173a183e3908c03eeb4b1f5a2ef0e4fb6ae2a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Control algorithms</topic><topic>EDGE Special Issue</topic><topic>Energy</topic><topic>Maximum entropy method</topic><topic>Nanoparticles</topic><topic>Noise control</topic><topic>Rocket launches</topic><topic>Sensors</topic><topic>Silver</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bellido, Edson P.</creatorcontrib><creatorcontrib>Rossouw, David</creatorcontrib><creatorcontrib>Botton, Gianluigi A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Microscopy and microanalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bellido, Edson P.</au><au>Rossouw, David</au><au>Botton, Gianluigi A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward 10 meV Electron Energy-Loss Spectroscopy Resolution for Plasmonics</atitle><jtitle>Microscopy and microanalysis</jtitle><addtitle>Microsc Microanal</addtitle><date>2014-06-01</date><risdate>2014</risdate><volume>20</volume><issue>3</issue><spage>767</spage><epage>778</epage><pages>767-778</pages><issn>1431-9276</issn><eissn>1435-8115</eissn><abstract>Energy resolution is one of the most important parameters in electron energy-loss spectroscopy. This is especially true for measurement of surface plasmon resonances, where high-energy resolution is crucial for resolving individual resonance peaks, in particular close to the zero-loss peak. In this work, we improve the energy resolution of electron energy-loss spectra of surface plasmon resonances, acquired with a monochromated beam in a scanning transmission electron microscope, by the use of the Richardson–Lucy deconvolution algorithm. We test the performance of the algorithm in a simulated spectrum and then apply it to experimental energy-loss spectra of a lithographically patterned silver nanorod. By reduction of the point spread function of the spectrum, we are able to identify low-energy surface plasmon peaks in spectra, more localized features, and higher contrast in surface plasmon energy-filtered maps. Thanks to the combination of a monochromated beam and the Richardson–Lucy algorithm, we improve the effective resolution down to 30 meV, and evidence of success up to 10 meV resolution for losses below 1 eV. We also propose, implement, and test two methods to limit the number of iterations in the algorithm. The first method is based on noise measurement and analysis, while in the second we monitor the change of slope in the deconvolved spectrum.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><pmid>24690472</pmid><doi>10.1017/S1431927614000609</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1431-9276 |
ispartof | Microscopy and microanalysis, 2014-06, Vol.20 (3), p.767-778 |
issn | 1431-9276 1435-8115 |
language | eng |
recordid | cdi_proquest_miscellaneous_1542650605 |
source | Alma/SFX Local Collection |
subjects | Algorithms Control algorithms EDGE Special Issue Energy Maximum entropy method Nanoparticles Noise control Rocket launches Sensors Silver Spectroscopy Spectrum analysis |
title | Toward 10 meV Electron Energy-Loss Spectroscopy Resolution for Plasmonics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A32%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%2010%20meV%20Electron%20Energy-Loss%20Spectroscopy%20Resolution%20for%20Plasmonics&rft.jtitle=Microscopy%20and%20microanalysis&rft.au=Bellido,%20Edson%20P.&rft.date=2014-06-01&rft.volume=20&rft.issue=3&rft.spage=767&rft.epage=778&rft.pages=767-778&rft.issn=1431-9276&rft.eissn=1435-8115&rft_id=info:doi/10.1017/S1431927614000609&rft_dat=%3Cproquest_cross%3E3382321521%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1547833497&rft_id=info:pmid/24690472&rft_cupid=10_1017_S1431927614000609&rfr_iscdi=true |