Detecting network communities using regularized spectral clustering algorithm

The progressively scale of online social network leads to the difficulty of traditional algorithms on detecting communities. We introduce an efficient and fast algorithm to detect community structure in social networks. Instead of using the eigenvectors in spectral clustering algorithms, we construc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Artificial intelligence review 2014-04, Vol.41 (4), p.579-594
Hauptverfasser: Huang, Liang, Li, Ruixuan, Chen, Hong, Gu, Xiwu, Wen, Kunmei, Li, Yuhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 594
container_issue 4
container_start_page 579
container_title The Artificial intelligence review
container_volume 41
creator Huang, Liang
Li, Ruixuan
Chen, Hong
Gu, Xiwu
Wen, Kunmei
Li, Yuhua
description The progressively scale of online social network leads to the difficulty of traditional algorithms on detecting communities. We introduce an efficient and fast algorithm to detect community structure in social networks. Instead of using the eigenvectors in spectral clustering algorithms, we construct a target function for detecting communities. The whole social network communities will be partitioned by this target function. We also analyze and estimate the generalization error of the algorithm. The performance of the algorithm is compared with the standard spectral clustering algorithm, which is applied to different well-known instances of social networks with a community structure, both computer generated and from the real world. The experimental results demonstrate the effectiveness of the algorithm.
doi_str_mv 10.1007/s10462-012-9325-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1541990175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1541990175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-6ccc2101e4a6d1bbe6973e2998327a0e31508834baf02235f01120d52a6260573</originalsourceid><addsrcrecordid>eNqNkU1LxEAMhgdRcP34Ad4KXrxUk0w7bY-yfsKKFz0Ps7Pp2rUf60yL6K93Sj2IIHgKJM-b8OYV4gThHAGyC4-QKIoBKS4kpbHcETNMMxlnob0rZkCqiCkn3BcH3m8AIKVEzsTDFfds-6pdRy337517jWzXNENb9RX7aPDjxPF6qI2rPnkV-W3AnakjWw--ZzfOTb3uXNW_NEdirzS15-Pveiieb66f5nfx4vH2fn65iK3MqY-VtZYQkBOjVrhcsioyyVQUuaTMAEtMIc9lsjQlEMm0BESCVUpGkYLg6lCcTXu3rnsb2Pe6qbzlujYtd4PXmCZYFIBZ-g-UoJDhmAro6S900w2uDUYCBRmSJCUDhRNlXee941JvXdUY96ER9JiFnrLQIQs9ZqFHDU0avx0fxu7H5j9FXzvaisA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1507123263</pqid></control><display><type>article</type><title>Detecting network communities using regularized spectral clustering algorithm</title><source>SpringerLink Journals</source><creator>Huang, Liang ; Li, Ruixuan ; Chen, Hong ; Gu, Xiwu ; Wen, Kunmei ; Li, Yuhua</creator><creatorcontrib>Huang, Liang ; Li, Ruixuan ; Chen, Hong ; Gu, Xiwu ; Wen, Kunmei ; Li, Yuhua</creatorcontrib><description>The progressively scale of online social network leads to the difficulty of traditional algorithms on detecting communities. We introduce an efficient and fast algorithm to detect community structure in social networks. Instead of using the eigenvectors in spectral clustering algorithms, we construct a target function for detecting communities. The whole social network communities will be partitioned by this target function. We also analyze and estimate the generalization error of the algorithm. The performance of the algorithm is compared with the standard spectral clustering algorithm, which is applied to different well-known instances of social networks with a community structure, both computer generated and from the real world. The experimental results demonstrate the effectiveness of the algorithm.</description><identifier>ISSN: 0269-2821</identifier><identifier>EISSN: 1573-7462</identifier><identifier>DOI: 10.1007/s10462-012-9325-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Artificial Intelligence ; Clustering ; Communities ; Computer Science ; Eigenvectors ; Identification ; Mathematical analysis ; Mathematical models ; Methods ; Modularity ; Recommender systems ; Similarity measures ; Social networks ; Spectra ; Target detection</subject><ispartof>The Artificial intelligence review, 2014-04, Vol.41 (4), p.579-594</ispartof><rights>Springer Science+Business Media B.V. 2012</rights><rights>Springer Science+Business Media Dordrecht 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-6ccc2101e4a6d1bbe6973e2998327a0e31508834baf02235f01120d52a6260573</citedby><cites>FETCH-LOGICAL-c382t-6ccc2101e4a6d1bbe6973e2998327a0e31508834baf02235f01120d52a6260573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10462-012-9325-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10462-012-9325-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Huang, Liang</creatorcontrib><creatorcontrib>Li, Ruixuan</creatorcontrib><creatorcontrib>Chen, Hong</creatorcontrib><creatorcontrib>Gu, Xiwu</creatorcontrib><creatorcontrib>Wen, Kunmei</creatorcontrib><creatorcontrib>Li, Yuhua</creatorcontrib><title>Detecting network communities using regularized spectral clustering algorithm</title><title>The Artificial intelligence review</title><addtitle>Artif Intell Rev</addtitle><description>The progressively scale of online social network leads to the difficulty of traditional algorithms on detecting communities. We introduce an efficient and fast algorithm to detect community structure in social networks. Instead of using the eigenvectors in spectral clustering algorithms, we construct a target function for detecting communities. The whole social network communities will be partitioned by this target function. We also analyze and estimate the generalization error of the algorithm. The performance of the algorithm is compared with the standard spectral clustering algorithm, which is applied to different well-known instances of social networks with a community structure, both computer generated and from the real world. The experimental results demonstrate the effectiveness of the algorithm.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Clustering</subject><subject>Communities</subject><subject>Computer Science</subject><subject>Eigenvectors</subject><subject>Identification</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Modularity</subject><subject>Recommender systems</subject><subject>Similarity measures</subject><subject>Social networks</subject><subject>Spectra</subject><subject>Target detection</subject><issn>0269-2821</issn><issn>1573-7462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkU1LxEAMhgdRcP34Ad4KXrxUk0w7bY-yfsKKFz0Ps7Pp2rUf60yL6K93Sj2IIHgKJM-b8OYV4gThHAGyC4-QKIoBKS4kpbHcETNMMxlnob0rZkCqiCkn3BcH3m8AIKVEzsTDFfds-6pdRy337517jWzXNENb9RX7aPDjxPF6qI2rPnkV-W3AnakjWw--ZzfOTb3uXNW_NEdirzS15-Pveiieb66f5nfx4vH2fn65iK3MqY-VtZYQkBOjVrhcsioyyVQUuaTMAEtMIc9lsjQlEMm0BESCVUpGkYLg6lCcTXu3rnsb2Pe6qbzlujYtd4PXmCZYFIBZ-g-UoJDhmAro6S900w2uDUYCBRmSJCUDhRNlXee941JvXdUY96ER9JiFnrLQIQs9ZqFHDU0avx0fxu7H5j9FXzvaisA</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Huang, Liang</creator><creator>Li, Ruixuan</creator><creator>Chen, Hong</creator><creator>Gu, Xiwu</creator><creator>Wen, Kunmei</creator><creator>Li, Yuhua</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M1O</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>F28</scope><scope>FR3</scope><scope>8BP</scope></search><sort><creationdate>20140401</creationdate><title>Detecting network communities using regularized spectral clustering algorithm</title><author>Huang, Liang ; Li, Ruixuan ; Chen, Hong ; Gu, Xiwu ; Wen, Kunmei ; Li, Yuhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-6ccc2101e4a6d1bbe6973e2998327a0e31508834baf02235f01120d52a6260573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Clustering</topic><topic>Communities</topic><topic>Computer Science</topic><topic>Eigenvectors</topic><topic>Identification</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Modularity</topic><topic>Recommender systems</topic><topic>Similarity measures</topic><topic>Social networks</topic><topic>Spectra</topic><topic>Target detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Liang</creatorcontrib><creatorcontrib>Li, Ruixuan</creatorcontrib><creatorcontrib>Chen, Hong</creatorcontrib><creatorcontrib>Gu, Xiwu</creatorcontrib><creatorcontrib>Wen, Kunmei</creatorcontrib><creatorcontrib>Li, Yuhua</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Library &amp; Information Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Library Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA) - CILIP Edition</collection><jtitle>The Artificial intelligence review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Liang</au><au>Li, Ruixuan</au><au>Chen, Hong</au><au>Gu, Xiwu</au><au>Wen, Kunmei</au><au>Li, Yuhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting network communities using regularized spectral clustering algorithm</atitle><jtitle>The Artificial intelligence review</jtitle><stitle>Artif Intell Rev</stitle><date>2014-04-01</date><risdate>2014</risdate><volume>41</volume><issue>4</issue><spage>579</spage><epage>594</epage><pages>579-594</pages><issn>0269-2821</issn><eissn>1573-7462</eissn><abstract>The progressively scale of online social network leads to the difficulty of traditional algorithms on detecting communities. We introduce an efficient and fast algorithm to detect community structure in social networks. Instead of using the eigenvectors in spectral clustering algorithms, we construct a target function for detecting communities. The whole social network communities will be partitioned by this target function. We also analyze and estimate the generalization error of the algorithm. The performance of the algorithm is compared with the standard spectral clustering algorithm, which is applied to different well-known instances of social networks with a community structure, both computer generated and from the real world. The experimental results demonstrate the effectiveness of the algorithm.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10462-012-9325-3</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0269-2821
ispartof The Artificial intelligence review, 2014-04, Vol.41 (4), p.579-594
issn 0269-2821
1573-7462
language eng
recordid cdi_proquest_miscellaneous_1541990175
source SpringerLink Journals
subjects Algorithms
Artificial Intelligence
Clustering
Communities
Computer Science
Eigenvectors
Identification
Mathematical analysis
Mathematical models
Methods
Modularity
Recommender systems
Similarity measures
Social networks
Spectra
Target detection
title Detecting network communities using regularized spectral clustering algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A36%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20network%20communities%20using%20regularized%20spectral%20clustering%20algorithm&rft.jtitle=The%20Artificial%20intelligence%20review&rft.au=Huang,%20Liang&rft.date=2014-04-01&rft.volume=41&rft.issue=4&rft.spage=579&rft.epage=594&rft.pages=579-594&rft.issn=0269-2821&rft.eissn=1573-7462&rft_id=info:doi/10.1007/s10462-012-9325-3&rft_dat=%3Cproquest_cross%3E1541990175%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1507123263&rft_id=info:pmid/&rfr_iscdi=true