Autonomous Mobile Robot Localization and Navigation Using a Hierarchical Map Representation Primarily Guided by Vision

While impressive progress has recently been made with autonomous vehicles, both indoors and on streets, autonomous localization and navigation in less constrained and more dynamic environments, such as outdoor pedestrian and bicycle‐friendly sites, remains a challenging problem. We describe a new ap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of field robotics 2014-05, Vol.31 (3), p.408-440
Hauptverfasser: Siagian, Christian, Chang, Chin Kai, Itti, Laurent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 440
container_issue 3
container_start_page 408
container_title Journal of field robotics
container_volume 31
creator Siagian, Christian
Chang, Chin Kai
Itti, Laurent
description While impressive progress has recently been made with autonomous vehicles, both indoors and on streets, autonomous localization and navigation in less constrained and more dynamic environments, such as outdoor pedestrian and bicycle‐friendly sites, remains a challenging problem. We describe a new approach that utilizes several visual perception modules—place recognition, landmark recognition, and road lane detection—supplemented by proximity cues from a planar laser range finder for obstacle avoidance. At the core of our system is a new hybrid topological/grid‐occupancy map that integrates the outputs from all perceptual modules, despite different latencies and time scales. Our approach allows for real‐time performance through a combination of fast but shallow processing modules that update the map's state while slower but more discriminating modules are still computing. We validated our system using a ground vehicle that autonomously traversed three outdoor routes several times, each 400 m or longer, on a university campus. The routes featured different road types, environmental hazards, moving pedestrians, and service vehicles. In total, the robot logged over 10 km of successful recorded experiments, driving within a median of 1.37 m laterally of the center of the road, and localizing within 0.97 m (median) longitudinally of its true location along the route.
doi_str_mv 10.1002/rob.21505
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_1541450843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3267860131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4005-334e2fff2bff1086fa476a2c38e2d99325e19d1743e837eb25799f3f6cdb54d73</originalsourceid><addsrcrecordid>eNpdkMtOwzAQRSMEElBY8AeW2LBJ8TOJlzxboAVUtcDOchIbDGlc7AQoX49pUBes5o7m3NHMjaIDBPsIQnzsbN7HiEG2Ee0gxpKY8iTdXGvGt6Nd718hpCTjbCf6OGkbW9u5bT0Y29xUCkxsbhswsoWszLdsjK2BrEtwKz_Mc9fOvKmfgQRDo5x0xYsJKBjLBZiohVNe1U3H3Tszl85USzBoTalKkC_Bg_FhtBdtaVl5tf9Xe9Hs8mJ6NoxHd4Ors5NRXFAIWUwIVVhrjXOtEcwSLWmaSFyQTOGSc4KZQrxEKSUqI6nKMUs510QnRZkzWqakFx11exfOvrfKN2JufKGqStYqvCwQo4gymFES0MN_6KttXR2uCxQiGDMGcaCOO-ozRLUUi9WHS4Gg-I1fhPjFKn4xuTtdieCIO4fxjfpaO6R7E0lKUiYebwfi_Ikk05sHLq7JD9oaib8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1513225502</pqid></control><display><type>article</type><title>Autonomous Mobile Robot Localization and Navigation Using a Hierarchical Map Representation Primarily Guided by Vision</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Siagian, Christian ; Chang, Chin Kai ; Itti, Laurent</creator><creatorcontrib>Siagian, Christian ; Chang, Chin Kai ; Itti, Laurent</creatorcontrib><description>While impressive progress has recently been made with autonomous vehicles, both indoors and on streets, autonomous localization and navigation in less constrained and more dynamic environments, such as outdoor pedestrian and bicycle‐friendly sites, remains a challenging problem. We describe a new approach that utilizes several visual perception modules—place recognition, landmark recognition, and road lane detection—supplemented by proximity cues from a planar laser range finder for obstacle avoidance. At the core of our system is a new hybrid topological/grid‐occupancy map that integrates the outputs from all perceptual modules, despite different latencies and time scales. Our approach allows for real‐time performance through a combination of fast but shallow processing modules that update the map's state while slower but more discriminating modules are still computing. We validated our system using a ground vehicle that autonomously traversed three outdoor routes several times, each 400 m or longer, on a university campus. The routes featured different road types, environmental hazards, moving pedestrians, and service vehicles. In total, the robot logged over 10 km of successful recorded experiments, driving within a median of 1.37 m laterally of the center of the road, and localizing within 0.97 m (median) longitudinally of its true location along the route.</description><identifier>ISSN: 1556-4959</identifier><identifier>EISSN: 1556-4967</identifier><identifier>DOI: 10.1002/rob.21505</identifier><language>eng</language><publisher>Hoboken: Blackwell Publishing Ltd</publisher><subject>Autonomous ; Modules ; Navigation ; Position (location) ; Recognition ; Roads ; Robots ; Vehicles</subject><ispartof>Journal of field robotics, 2014-05, Vol.31 (3), p.408-440</ispartof><rights>2014 Wiley Periodicals, Inc.</rights><rights>Copyright © 2014 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4005-334e2fff2bff1086fa476a2c38e2d99325e19d1743e837eb25799f3f6cdb54d73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frob.21505$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frob.21505$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Siagian, Christian</creatorcontrib><creatorcontrib>Chang, Chin Kai</creatorcontrib><creatorcontrib>Itti, Laurent</creatorcontrib><title>Autonomous Mobile Robot Localization and Navigation Using a Hierarchical Map Representation Primarily Guided by Vision</title><title>Journal of field robotics</title><addtitle>J. Field Robotics</addtitle><description>While impressive progress has recently been made with autonomous vehicles, both indoors and on streets, autonomous localization and navigation in less constrained and more dynamic environments, such as outdoor pedestrian and bicycle‐friendly sites, remains a challenging problem. We describe a new approach that utilizes several visual perception modules—place recognition, landmark recognition, and road lane detection—supplemented by proximity cues from a planar laser range finder for obstacle avoidance. At the core of our system is a new hybrid topological/grid‐occupancy map that integrates the outputs from all perceptual modules, despite different latencies and time scales. Our approach allows for real‐time performance through a combination of fast but shallow processing modules that update the map's state while slower but more discriminating modules are still computing. We validated our system using a ground vehicle that autonomously traversed three outdoor routes several times, each 400 m or longer, on a university campus. The routes featured different road types, environmental hazards, moving pedestrians, and service vehicles. In total, the robot logged over 10 km of successful recorded experiments, driving within a median of 1.37 m laterally of the center of the road, and localizing within 0.97 m (median) longitudinally of its true location along the route.</description><subject>Autonomous</subject><subject>Modules</subject><subject>Navigation</subject><subject>Position (location)</subject><subject>Recognition</subject><subject>Roads</subject><subject>Robots</subject><subject>Vehicles</subject><issn>1556-4959</issn><issn>1556-4967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpdkMtOwzAQRSMEElBY8AeW2LBJ8TOJlzxboAVUtcDOchIbDGlc7AQoX49pUBes5o7m3NHMjaIDBPsIQnzsbN7HiEG2Ee0gxpKY8iTdXGvGt6Nd718hpCTjbCf6OGkbW9u5bT0Y29xUCkxsbhswsoWszLdsjK2BrEtwKz_Mc9fOvKmfgQRDo5x0xYsJKBjLBZiohVNe1U3H3Tszl85USzBoTalKkC_Bg_FhtBdtaVl5tf9Xe9Hs8mJ6NoxHd4Ors5NRXFAIWUwIVVhrjXOtEcwSLWmaSFyQTOGSc4KZQrxEKSUqI6nKMUs510QnRZkzWqakFx11exfOvrfKN2JufKGqStYqvCwQo4gymFES0MN_6KttXR2uCxQiGDMGcaCOO-ozRLUUi9WHS4Gg-I1fhPjFKn4xuTtdieCIO4fxjfpaO6R7E0lKUiYebwfi_Ikk05sHLq7JD9oaib8</recordid><startdate>201405</startdate><enddate>201405</enddate><creator>Siagian, Christian</creator><creator>Chang, Chin Kai</creator><creator>Itti, Laurent</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201405</creationdate><title>Autonomous Mobile Robot Localization and Navigation Using a Hierarchical Map Representation Primarily Guided by Vision</title><author>Siagian, Christian ; Chang, Chin Kai ; Itti, Laurent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4005-334e2fff2bff1086fa476a2c38e2d99325e19d1743e837eb25799f3f6cdb54d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Autonomous</topic><topic>Modules</topic><topic>Navigation</topic><topic>Position (location)</topic><topic>Recognition</topic><topic>Roads</topic><topic>Robots</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siagian, Christian</creatorcontrib><creatorcontrib>Chang, Chin Kai</creatorcontrib><creatorcontrib>Itti, Laurent</creatorcontrib><collection>Istex</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of field robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siagian, Christian</au><au>Chang, Chin Kai</au><au>Itti, Laurent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autonomous Mobile Robot Localization and Navigation Using a Hierarchical Map Representation Primarily Guided by Vision</atitle><jtitle>Journal of field robotics</jtitle><addtitle>J. Field Robotics</addtitle><date>2014-05</date><risdate>2014</risdate><volume>31</volume><issue>3</issue><spage>408</spage><epage>440</epage><pages>408-440</pages><issn>1556-4959</issn><eissn>1556-4967</eissn><abstract>While impressive progress has recently been made with autonomous vehicles, both indoors and on streets, autonomous localization and navigation in less constrained and more dynamic environments, such as outdoor pedestrian and bicycle‐friendly sites, remains a challenging problem. We describe a new approach that utilizes several visual perception modules—place recognition, landmark recognition, and road lane detection—supplemented by proximity cues from a planar laser range finder for obstacle avoidance. At the core of our system is a new hybrid topological/grid‐occupancy map that integrates the outputs from all perceptual modules, despite different latencies and time scales. Our approach allows for real‐time performance through a combination of fast but shallow processing modules that update the map's state while slower but more discriminating modules are still computing. We validated our system using a ground vehicle that autonomously traversed three outdoor routes several times, each 400 m or longer, on a university campus. The routes featured different road types, environmental hazards, moving pedestrians, and service vehicles. In total, the robot logged over 10 km of successful recorded experiments, driving within a median of 1.37 m laterally of the center of the road, and localizing within 0.97 m (median) longitudinally of its true location along the route.</abstract><cop>Hoboken</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/rob.21505</doi><tpages>33</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1556-4959
ispartof Journal of field robotics, 2014-05, Vol.31 (3), p.408-440
issn 1556-4959
1556-4967
language eng
recordid cdi_proquest_miscellaneous_1541450843
source Wiley Online Library Journals Frontfile Complete
subjects Autonomous
Modules
Navigation
Position (location)
Recognition
Roads
Robots
Vehicles
title Autonomous Mobile Robot Localization and Navigation Using a Hierarchical Map Representation Primarily Guided by Vision
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A01%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autonomous%20Mobile%20Robot%20Localization%20and%20Navigation%20Using%20a%20Hierarchical%20Map%20Representation%20Primarily%20Guided%20by%20Vision&rft.jtitle=Journal%20of%20field%20robotics&rft.au=Siagian,%20Christian&rft.date=2014-05&rft.volume=31&rft.issue=3&rft.spage=408&rft.epage=440&rft.pages=408-440&rft.issn=1556-4959&rft.eissn=1556-4967&rft_id=info:doi/10.1002/rob.21505&rft_dat=%3Cproquest_wiley%3E3267860131%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1513225502&rft_id=info:pmid/&rfr_iscdi=true