Ammonia Gas Detection by Tannic Acid Functionalized and Reduced Graphene Oxide at Room Temperature

Reduced graphene oxide (rGO) based chemiresistor gas sensor has received much attention in gas sensing for high sensitivity, room temperature operation, and reversible. Here, for the first time, we present a promising chemiresistor for ammonia gas detection based on tannic acid (TA) functionalized a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nanomaterials 2014-01, Vol.2014 (2014), p.1-6
Hauptverfasser: Wang, Xiaoli, Liu, Weihua, Wu, Yuan, Li, Xin, Yoo, Sweejiang, Yi, Wenhui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue 2014
container_start_page 1
container_title Journal of nanomaterials
container_volume 2014
creator Wang, Xiaoli
Liu, Weihua
Wu, Yuan
Li, Xin
Yoo, Sweejiang
Yi, Wenhui
description Reduced graphene oxide (rGO) based chemiresistor gas sensor has received much attention in gas sensing for high sensitivity, room temperature operation, and reversible. Here, for the first time, we present a promising chemiresistor for ammonia gas detection based on tannic acid (TA) functionalized and reduced graphene oxide ( rGO TA functionalized ). Green reductant of TA plays a major role in both reducing process and enhancing the gas sensing properties of rGO TA functionalized . Our results show rGO TA functionalized only selective to ammonia with excellent respond, recovery, respond time, and recovery times. rGO TA functionalized electrical resistance decreases upon exposure to NH3 where we postulated that it is due to n-doping by TA and charge transfer between rGO TA functionalized and NH3 through hydrogen bonding. Furthermore, rGO TA functionalized hinders the needs for stimulus for both recovery and respond. The combination of greener sensing material and simplicity in overall sensor design provides a new sight for green reductant approach of rGO based chemiresistor gas sensor.
doi_str_mv 10.1155/2014/497384
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1541443079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1541443079</sourcerecordid><originalsourceid>FETCH-LOGICAL-a565t-72078fdaede1728cb4f7500c35334d97187d1070637fdabbd320ed1dba98ced73</originalsourceid><addsrcrecordid>eNqF0FFLwzAQB_AgCs7pk-8S8EWUuaRJmvZxTDeFwWDM55I2V5bRpjVp0fnpba2I-OLTHceP4-6P0CUl95QKMQ0I5VMeSxbxIzSiYSQnnAbx8U9PySk6835PCBexCEYonZVlZY3CS-XxAzSQNaayOD3grbLWZHiWGY0Xrf2aq8J8gMbKarwB3WZdv3Sq3oEFvH43GrBq8KaqSryFsganmtbBOTrJVeHh4ruO0cvicTt_mqzWy-f5bDVRIhTNRAZERrlWoIHKIMpSnktBSMYEY1zHkkZSUyJJyGSn0lSzgICmOlVx1B0i2RjdDHtrV7224JukND6DolAWqtYnVHDKOSMy7uj1H7qvWte916uQB5IHtFd3g8pc5b2DPKmdKZU7JJQkfd5Jn3cy5N3p20HvjNXqzfyDrwYMHYFc_cKcipixT4LdiC8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1564274219</pqid></control><display><type>article</type><title>Ammonia Gas Detection by Tannic Acid Functionalized and Reduced Graphene Oxide at Room Temperature</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Wang, Xiaoli ; Liu, Weihua ; Wu, Yuan ; Li, Xin ; Yoo, Sweejiang ; Yi, Wenhui</creator><contributor>Kang, Zhenhui</contributor><creatorcontrib>Wang, Xiaoli ; Liu, Weihua ; Wu, Yuan ; Li, Xin ; Yoo, Sweejiang ; Yi, Wenhui ; Kang, Zhenhui</creatorcontrib><description>Reduced graphene oxide (rGO) based chemiresistor gas sensor has received much attention in gas sensing for high sensitivity, room temperature operation, and reversible. Here, for the first time, we present a promising chemiresistor for ammonia gas detection based on tannic acid (TA) functionalized and reduced graphene oxide ( rGO TA functionalized ). Green reductant of TA plays a major role in both reducing process and enhancing the gas sensing properties of rGO TA functionalized . Our results show rGO TA functionalized only selective to ammonia with excellent respond, recovery, respond time, and recovery times. rGO TA functionalized electrical resistance decreases upon exposure to NH3 where we postulated that it is due to n-doping by TA and charge transfer between rGO TA functionalized and NH3 through hydrogen bonding. Furthermore, rGO TA functionalized hinders the needs for stimulus for both recovery and respond. The combination of greener sensing material and simplicity in overall sensor design provides a new sight for green reductant approach of rGO based chemiresistor gas sensor.</description><identifier>ISSN: 1687-4110</identifier><identifier>EISSN: 1687-4129</identifier><identifier>DOI: 10.1155/2014/497384</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Ammonia ; Electrodes ; Gas sensors ; Graphene ; Hydrogen bonding ; Nanocomposites ; Nanomaterials ; Nanoparticles ; Oxides ; Recovery ; Sensors ; Tannic acid ; Tantalum ; Temperature</subject><ispartof>Journal of nanomaterials, 2014-01, Vol.2014 (2014), p.1-6</ispartof><rights>Copyright © 2014 Sweejiang Yoo et al.</rights><rights>Copyright © 2014 Sweejiang Yoo et al. Sweejiang Yoo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a565t-72078fdaede1728cb4f7500c35334d97187d1070637fdabbd320ed1dba98ced73</citedby><cites>FETCH-LOGICAL-a565t-72078fdaede1728cb4f7500c35334d97187d1070637fdabbd320ed1dba98ced73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Kang, Zhenhui</contributor><creatorcontrib>Wang, Xiaoli</creatorcontrib><creatorcontrib>Liu, Weihua</creatorcontrib><creatorcontrib>Wu, Yuan</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Yoo, Sweejiang</creatorcontrib><creatorcontrib>Yi, Wenhui</creatorcontrib><title>Ammonia Gas Detection by Tannic Acid Functionalized and Reduced Graphene Oxide at Room Temperature</title><title>Journal of nanomaterials</title><description>Reduced graphene oxide (rGO) based chemiresistor gas sensor has received much attention in gas sensing for high sensitivity, room temperature operation, and reversible. Here, for the first time, we present a promising chemiresistor for ammonia gas detection based on tannic acid (TA) functionalized and reduced graphene oxide ( rGO TA functionalized ). Green reductant of TA plays a major role in both reducing process and enhancing the gas sensing properties of rGO TA functionalized . Our results show rGO TA functionalized only selective to ammonia with excellent respond, recovery, respond time, and recovery times. rGO TA functionalized electrical resistance decreases upon exposure to NH3 where we postulated that it is due to n-doping by TA and charge transfer between rGO TA functionalized and NH3 through hydrogen bonding. Furthermore, rGO TA functionalized hinders the needs for stimulus for both recovery and respond. The combination of greener sensing material and simplicity in overall sensor design provides a new sight for green reductant approach of rGO based chemiresistor gas sensor.</description><subject>Ammonia</subject><subject>Electrodes</subject><subject>Gas sensors</subject><subject>Graphene</subject><subject>Hydrogen bonding</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Oxides</subject><subject>Recovery</subject><subject>Sensors</subject><subject>Tannic acid</subject><subject>Tantalum</subject><subject>Temperature</subject><issn>1687-4110</issn><issn>1687-4129</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqF0FFLwzAQB_AgCs7pk-8S8EWUuaRJmvZxTDeFwWDM55I2V5bRpjVp0fnpba2I-OLTHceP4-6P0CUl95QKMQ0I5VMeSxbxIzSiYSQnnAbx8U9PySk6835PCBexCEYonZVlZY3CS-XxAzSQNaayOD3grbLWZHiWGY0Xrf2aq8J8gMbKarwB3WZdv3Sq3oEFvH43GrBq8KaqSryFsganmtbBOTrJVeHh4ruO0cvicTt_mqzWy-f5bDVRIhTNRAZERrlWoIHKIMpSnktBSMYEY1zHkkZSUyJJyGSn0lSzgICmOlVx1B0i2RjdDHtrV7224JukND6DolAWqtYnVHDKOSMy7uj1H7qvWte916uQB5IHtFd3g8pc5b2DPKmdKZU7JJQkfd5Jn3cy5N3p20HvjNXqzfyDrwYMHYFc_cKcipixT4LdiC8</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Wang, Xiaoli</creator><creator>Liu, Weihua</creator><creator>Wu, Yuan</creator><creator>Li, Xin</creator><creator>Yoo, Sweejiang</creator><creator>Yi, Wenhui</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20140101</creationdate><title>Ammonia Gas Detection by Tannic Acid Functionalized and Reduced Graphene Oxide at Room Temperature</title><author>Wang, Xiaoli ; Liu, Weihua ; Wu, Yuan ; Li, Xin ; Yoo, Sweejiang ; Yi, Wenhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a565t-72078fdaede1728cb4f7500c35334d97187d1070637fdabbd320ed1dba98ced73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Ammonia</topic><topic>Electrodes</topic><topic>Gas sensors</topic><topic>Graphene</topic><topic>Hydrogen bonding</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Oxides</topic><topic>Recovery</topic><topic>Sensors</topic><topic>Tannic acid</topic><topic>Tantalum</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiaoli</creatorcontrib><creatorcontrib>Liu, Weihua</creatorcontrib><creatorcontrib>Wu, Yuan</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Yoo, Sweejiang</creatorcontrib><creatorcontrib>Yi, Wenhui</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Journal of nanomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xiaoli</au><au>Liu, Weihua</au><au>Wu, Yuan</au><au>Li, Xin</au><au>Yoo, Sweejiang</au><au>Yi, Wenhui</au><au>Kang, Zhenhui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ammonia Gas Detection by Tannic Acid Functionalized and Reduced Graphene Oxide at Room Temperature</atitle><jtitle>Journal of nanomaterials</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>2014</volume><issue>2014</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1687-4110</issn><eissn>1687-4129</eissn><abstract>Reduced graphene oxide (rGO) based chemiresistor gas sensor has received much attention in gas sensing for high sensitivity, room temperature operation, and reversible. Here, for the first time, we present a promising chemiresistor for ammonia gas detection based on tannic acid (TA) functionalized and reduced graphene oxide ( rGO TA functionalized ). Green reductant of TA plays a major role in both reducing process and enhancing the gas sensing properties of rGO TA functionalized . Our results show rGO TA functionalized only selective to ammonia with excellent respond, recovery, respond time, and recovery times. rGO TA functionalized electrical resistance decreases upon exposure to NH3 where we postulated that it is due to n-doping by TA and charge transfer between rGO TA functionalized and NH3 through hydrogen bonding. Furthermore, rGO TA functionalized hinders the needs for stimulus for both recovery and respond. The combination of greener sensing material and simplicity in overall sensor design provides a new sight for green reductant approach of rGO based chemiresistor gas sensor.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2014/497384</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-4110
ispartof Journal of nanomaterials, 2014-01, Vol.2014 (2014), p.1-6
issn 1687-4110
1687-4129
language eng
recordid cdi_proquest_miscellaneous_1541443079
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Ammonia
Electrodes
Gas sensors
Graphene
Hydrogen bonding
Nanocomposites
Nanomaterials
Nanoparticles
Oxides
Recovery
Sensors
Tannic acid
Tantalum
Temperature
title Ammonia Gas Detection by Tannic Acid Functionalized and Reduced Graphene Oxide at Room Temperature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T03%3A12%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ammonia%20Gas%20Detection%20by%20Tannic%20Acid%20Functionalized%20and%20Reduced%20Graphene%20Oxide%20at%20Room%20Temperature&rft.jtitle=Journal%20of%20nanomaterials&rft.au=Wang,%20Xiaoli&rft.date=2014-01-01&rft.volume=2014&rft.issue=2014&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1687-4110&rft.eissn=1687-4129&rft_id=info:doi/10.1155/2014/497384&rft_dat=%3Cproquest_cross%3E1541443079%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1564274219&rft_id=info:pmid/&rfr_iscdi=true