An Effective and Globally Convergent Newton Fixed-Point Homotopy Method for MOS Transistor Circuits

Finding DC operating points of nonlinear circuits is an important and difficult task. The Newton-Raphson method adopted in the SPICE-like simulators often fails to converge to a solution. To overcome this convergence problem, homotopy methods have been studied from various viewpoints. However, the p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences Communications and Computer Sciences, 2013/09/01, Vol.E96.A(9), pp.1848-1856
Hauptverfasser: NIU, Dan, WU, Xiao, JIN, Zhou, INOUE, Yasuaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1856
container_issue 9
container_start_page 1848
container_title IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
container_volume E96.A
creator NIU, Dan
WU, Xiao
JIN, Zhou
INOUE, Yasuaki
description Finding DC operating points of nonlinear circuits is an important and difficult task. The Newton-Raphson method adopted in the SPICE-like simulators often fails to converge to a solution. To overcome this convergence problem, homotopy methods have been studied from various viewpoints. However, the previous studies are mainly focused on the bipolar transistor circuits. Also the efficiencies of the previous homotopy methods for MOS transistor circuits are not satisfactory. Therefore, finding a more efficient homotopy method for MOS transistor circuits becomes necessary and important. This paper proposes a Newton fixed-point homotopy method for MOS transistor circuits and proposes an embedding algorithm in the implementation as well. Moreover, the global convergence theorems of the proposed Newton fixed-point homotopy method for MOS transistor circuits are also proved. Numerical examples show that the efficiencies for finding DC operating points of MOS transistor circuits by the proposed MOS Newton fixed-point homotopy method with the two embedding types can be largely enhanced (can larger than 50%) comparing with the conventional MOS homotopy methods, especially for some large-scale MOS transistor circuits which can not be easily solved by the SPICE3 and HSPICE simulators.
doi_str_mv 10.1587/transfun.E96.A.1848
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1541436055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1541436055</sourcerecordid><originalsourceid>FETCH-LOGICAL-c545t-7414fa1cb909ff55317da6fb0a27c55b64cb0cccdee30956a340feb96e6269093</originalsourceid><addsrcrecordid>eNpdkEFLKzEUhYMoWKu_wE02gpupyWSSmVmWUqugT0Fdh0zmRiPTpCap2n9vSn3l8VaXe_nOOZeD0DklE8qb-ioF5aJZu8m8FZPphDZVc4BGtK54QRmrD9GItFQUDSfNMTqJ8Z0Q2pS0GiE9dXhuDOhkPwEr1-PF4Ds1DBs88-4Twiu4hP_AV_IOX9tv6ItHb_Ppxi998qsNvof05ntsfMD3D0_4efuKjSmvMxv02qZ4io6MGiKc_c4xermeP89uiruHxe1seldoXvFU1BWtjKK6a0lrDOeM1r0SpiOqrDXnnah0R7TWPQAjLReKVcRA1woQpcgaNkaXO99V8B9riEkubdQwDMqBX0dJeU5ggmTrMWI7VAcfYwAjV8EuVdhISuS2Uvm3UpkrlVO5rTSrLn4DVNRqMBnRNu6lZV2XhJUic7c77j0m9Qp7QIVk9QD_e7f_ZOwZ_aaCBMd-AEYTlVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1541436055</pqid></control><display><type>article</type><title>An Effective and Globally Convergent Newton Fixed-Point Homotopy Method for MOS Transistor Circuits</title><source>J-STAGE (Japan Science &amp; Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><creator>NIU, Dan ; WU, Xiao ; JIN, Zhou ; INOUE, Yasuaki</creator><creatorcontrib>NIU, Dan ; WU, Xiao ; JIN, Zhou ; INOUE, Yasuaki</creatorcontrib><description>Finding DC operating points of nonlinear circuits is an important and difficult task. The Newton-Raphson method adopted in the SPICE-like simulators often fails to converge to a solution. To overcome this convergence problem, homotopy methods have been studied from various viewpoints. However, the previous studies are mainly focused on the bipolar transistor circuits. Also the efficiencies of the previous homotopy methods for MOS transistor circuits are not satisfactory. Therefore, finding a more efficient homotopy method for MOS transistor circuits becomes necessary and important. This paper proposes a Newton fixed-point homotopy method for MOS transistor circuits and proposes an embedding algorithm in the implementation as well. Moreover, the global convergence theorems of the proposed Newton fixed-point homotopy method for MOS transistor circuits are also proved. Numerical examples show that the efficiencies for finding DC operating points of MOS transistor circuits by the proposed MOS Newton fixed-point homotopy method with the two embedding types can be largely enhanced (can larger than 50%) comparing with the conventional MOS homotopy methods, especially for some large-scale MOS transistor circuits which can not be easily solved by the SPICE3 and HSPICE simulators.</description><identifier>ISSN: 0916-8508</identifier><identifier>EISSN: 1745-1337</identifier><identifier>DOI: 10.1587/transfun.E96.A.1848</identifier><language>eng</language><publisher>Tokyo: The Institute of Electronics, Information and Communication Engineers</publisher><subject>Algebra ; Algebraic geometry ; Applied sciences ; circuit simulation ; Circuits ; Convergence ; DC operating-point ; Direct current ; Electronics ; Exact sciences and technology ; Fixed points (mathematics) ; homotopy method ; Integrated circuits ; Integrated circuits by function (including memories and processors) ; Mathematical models ; Mathematics ; Metal oxide semiconductors ; nonlinear circuit ; Sciences and techniques of general use ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Simulators ; Tasks ; Transistor circuits</subject><ispartof>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2013/09/01, Vol.E96.A(9), pp.1848-1856</ispartof><rights>2013 The Institute of Electronics, Information and Communication Engineers</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c545t-7414fa1cb909ff55317da6fb0a27c55b64cb0cccdee30956a340feb96e6269093</citedby><cites>FETCH-LOGICAL-c545t-7414fa1cb909ff55317da6fb0a27c55b64cb0cccdee30956a340feb96e6269093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,1877,4010,27904,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27720326$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>NIU, Dan</creatorcontrib><creatorcontrib>WU, Xiao</creatorcontrib><creatorcontrib>JIN, Zhou</creatorcontrib><creatorcontrib>INOUE, Yasuaki</creatorcontrib><title>An Effective and Globally Convergent Newton Fixed-Point Homotopy Method for MOS Transistor Circuits</title><title>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</title><addtitle>IEICE Trans. Fundamentals</addtitle><description>Finding DC operating points of nonlinear circuits is an important and difficult task. The Newton-Raphson method adopted in the SPICE-like simulators often fails to converge to a solution. To overcome this convergence problem, homotopy methods have been studied from various viewpoints. However, the previous studies are mainly focused on the bipolar transistor circuits. Also the efficiencies of the previous homotopy methods for MOS transistor circuits are not satisfactory. Therefore, finding a more efficient homotopy method for MOS transistor circuits becomes necessary and important. This paper proposes a Newton fixed-point homotopy method for MOS transistor circuits and proposes an embedding algorithm in the implementation as well. Moreover, the global convergence theorems of the proposed Newton fixed-point homotopy method for MOS transistor circuits are also proved. Numerical examples show that the efficiencies for finding DC operating points of MOS transistor circuits by the proposed MOS Newton fixed-point homotopy method with the two embedding types can be largely enhanced (can larger than 50%) comparing with the conventional MOS homotopy methods, especially for some large-scale MOS transistor circuits which can not be easily solved by the SPICE3 and HSPICE simulators.</description><subject>Algebra</subject><subject>Algebraic geometry</subject><subject>Applied sciences</subject><subject>circuit simulation</subject><subject>Circuits</subject><subject>Convergence</subject><subject>DC operating-point</subject><subject>Direct current</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fixed points (mathematics)</subject><subject>homotopy method</subject><subject>Integrated circuits</subject><subject>Integrated circuits by function (including memories and processors)</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Metal oxide semiconductors</subject><subject>nonlinear circuit</subject><subject>Sciences and techniques of general use</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Simulators</subject><subject>Tasks</subject><subject>Transistor circuits</subject><issn>0916-8508</issn><issn>1745-1337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpdkEFLKzEUhYMoWKu_wE02gpupyWSSmVmWUqugT0Fdh0zmRiPTpCap2n9vSn3l8VaXe_nOOZeD0DklE8qb-ioF5aJZu8m8FZPphDZVc4BGtK54QRmrD9GItFQUDSfNMTqJ8Z0Q2pS0GiE9dXhuDOhkPwEr1-PF4Ds1DBs88-4Twiu4hP_AV_IOX9tv6ItHb_Ppxi998qsNvof05ntsfMD3D0_4efuKjSmvMxv02qZ4io6MGiKc_c4xermeP89uiruHxe1seldoXvFU1BWtjKK6a0lrDOeM1r0SpiOqrDXnnah0R7TWPQAjLReKVcRA1woQpcgaNkaXO99V8B9riEkubdQwDMqBX0dJeU5ggmTrMWI7VAcfYwAjV8EuVdhISuS2Uvm3UpkrlVO5rTSrLn4DVNRqMBnRNu6lZV2XhJUic7c77j0m9Qp7QIVk9QD_e7f_ZOwZ_aaCBMd-AEYTlVw</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>NIU, Dan</creator><creator>WU, Xiao</creator><creator>JIN, Zhou</creator><creator>INOUE, Yasuaki</creator><general>The Institute of Electronics, Information and Communication Engineers</general><general>Engineering Sciences Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2013</creationdate><title>An Effective and Globally Convergent Newton Fixed-Point Homotopy Method for MOS Transistor Circuits</title><author>NIU, Dan ; WU, Xiao ; JIN, Zhou ; INOUE, Yasuaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c545t-7414fa1cb909ff55317da6fb0a27c55b64cb0cccdee30956a340feb96e6269093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algebra</topic><topic>Algebraic geometry</topic><topic>Applied sciences</topic><topic>circuit simulation</topic><topic>Circuits</topic><topic>Convergence</topic><topic>DC operating-point</topic><topic>Direct current</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fixed points (mathematics)</topic><topic>homotopy method</topic><topic>Integrated circuits</topic><topic>Integrated circuits by function (including memories and processors)</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Metal oxide semiconductors</topic><topic>nonlinear circuit</topic><topic>Sciences and techniques of general use</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Simulators</topic><topic>Tasks</topic><topic>Transistor circuits</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>NIU, Dan</creatorcontrib><creatorcontrib>WU, Xiao</creatorcontrib><creatorcontrib>JIN, Zhou</creatorcontrib><creatorcontrib>INOUE, Yasuaki</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>NIU, Dan</au><au>WU, Xiao</au><au>JIN, Zhou</au><au>INOUE, Yasuaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Effective and Globally Convergent Newton Fixed-Point Homotopy Method for MOS Transistor Circuits</atitle><jtitle>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</jtitle><addtitle>IEICE Trans. Fundamentals</addtitle><date>2013</date><risdate>2013</risdate><volume>E96.A</volume><issue>9</issue><spage>1848</spage><epage>1856</epage><pages>1848-1856</pages><issn>0916-8508</issn><eissn>1745-1337</eissn><abstract>Finding DC operating points of nonlinear circuits is an important and difficult task. The Newton-Raphson method adopted in the SPICE-like simulators often fails to converge to a solution. To overcome this convergence problem, homotopy methods have been studied from various viewpoints. However, the previous studies are mainly focused on the bipolar transistor circuits. Also the efficiencies of the previous homotopy methods for MOS transistor circuits are not satisfactory. Therefore, finding a more efficient homotopy method for MOS transistor circuits becomes necessary and important. This paper proposes a Newton fixed-point homotopy method for MOS transistor circuits and proposes an embedding algorithm in the implementation as well. Moreover, the global convergence theorems of the proposed Newton fixed-point homotopy method for MOS transistor circuits are also proved. Numerical examples show that the efficiencies for finding DC operating points of MOS transistor circuits by the proposed MOS Newton fixed-point homotopy method with the two embedding types can be largely enhanced (can larger than 50%) comparing with the conventional MOS homotopy methods, especially for some large-scale MOS transistor circuits which can not be easily solved by the SPICE3 and HSPICE simulators.</abstract><cop>Tokyo</cop><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transfun.E96.A.1848</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0916-8508
ispartof IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2013/09/01, Vol.E96.A(9), pp.1848-1856
issn 0916-8508
1745-1337
language eng
recordid cdi_proquest_miscellaneous_1541436055
source J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese
subjects Algebra
Algebraic geometry
Applied sciences
circuit simulation
Circuits
Convergence
DC operating-point
Direct current
Electronics
Exact sciences and technology
Fixed points (mathematics)
homotopy method
Integrated circuits
Integrated circuits by function (including memories and processors)
Mathematical models
Mathematics
Metal oxide semiconductors
nonlinear circuit
Sciences and techniques of general use
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Simulators
Tasks
Transistor circuits
title An Effective and Globally Convergent Newton Fixed-Point Homotopy Method for MOS Transistor Circuits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A31%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Effective%20and%20Globally%20Convergent%20Newton%20Fixed-Point%20Homotopy%20Method%20for%20MOS%20Transistor%20Circuits&rft.jtitle=IEICE%20Transactions%20on%20Fundamentals%20of%20Electronics,%20Communications%20and%20Computer%20Sciences&rft.au=NIU,%20Dan&rft.date=2013&rft.volume=E96.A&rft.issue=9&rft.spage=1848&rft.epage=1856&rft.pages=1848-1856&rft.issn=0916-8508&rft.eissn=1745-1337&rft_id=info:doi/10.1587/transfun.E96.A.1848&rft_dat=%3Cproquest_cross%3E1541436055%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1541436055&rft_id=info:pmid/&rfr_iscdi=true