Nonisothermal cold crystallization of poly(ethylene terephthalate)

The thermal transitions and the nonisothermal cold crystallization kinetics of poly(ethylene terephthalate) (PET) at constant heating rates were investigated using differential scanning calorimetry. It was found that the glass transition and crystallization temperature increased with the heating rat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials research 2011-05, Vol.26 (9), p.1107-1115
Hauptverfasser: Wellen, Renate M.R., Canedo, Eduardo, Rabello, Marcelo S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1115
container_issue 9
container_start_page 1107
container_title Journal of materials research
container_volume 26
creator Wellen, Renate M.R.
Canedo, Eduardo
Rabello, Marcelo S.
description The thermal transitions and the nonisothermal cold crystallization kinetics of poly(ethylene terephthalate) (PET) at constant heating rates were investigated using differential scanning calorimetry. It was found that the glass transition and crystallization temperature increased with the heating rates, while the melting temperature showed a little variation for the heating rates used. Crystallization and melting latent heats were remarkably constant, independent of the heating rate. Kinetics parameters were determined using Ozawa model. Two different kinetic regimes were identified, corresponding to primary and secondary crystallization, at low and high fractional crystallization, respectively, both following Ozawa’s model. Kinetics parameters were determined for the primary and secondary regimes; the pre-exponential constant (KT) and Ozawa’s exponent (m) decreased with increasing crystallization temperature. The combined kinetic parameter $Z = K_{\rm{T}}^{{\rm{1/}}m} $ increased exponentially with temperature; activation energies were estimated using Arrhenius plots for the two PET crystallization regimes.
doi_str_mv 10.1557/jmr.2011.44
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1541430753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_jmr_2011_44</cupid><sourcerecordid>1541430753</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-4a856001886d53fcce3b2887de70f5be7c34d0e4d9d5425ae69f879b6c6c4f943</originalsourceid><addsrcrecordid>eNp9kL1OwzAURi0EEqUw8QIZiyDFTq4TZ4SKP6mCBWbLcW6aVE4cbHcIT0-qdoXpLkfn0z2EXDO6ZJzn99vOLRPK2BLghMwSChDzNMlOyYwKAXFSMDgnF95vKWWc5jAjj--2b70NDbpOmUhbU0XajT4oY9ofFVrbR7aOBmvGBYZmNNhjFNDh0IRGGRXw5pKc1cp4vDreOfl6fvpcvcbrj5e31cM61kDzEIMSPJt2hcgqntZaY1omQuQV5rTmJeY6hYoiVEXFIeEKs6IWeVFmOtNQF5DOyeLgHZz93qEPsmu9RmNUj3bnJePAIKU5Tyf09oBqZ713WMvBtZ1yo2RU7kvJqZTcl5KwF98daD9R_Qad3Nqd66df_sDjo1x1pWurDf7P_wLGV3p1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1541430753</pqid></control><display><type>article</type><title>Nonisothermal cold crystallization of poly(ethylene terephthalate)</title><source>SpringerLink Journals</source><creator>Wellen, Renate M.R. ; Canedo, Eduardo ; Rabello, Marcelo S.</creator><creatorcontrib>Wellen, Renate M.R. ; Canedo, Eduardo ; Rabello, Marcelo S.</creatorcontrib><description>The thermal transitions and the nonisothermal cold crystallization kinetics of poly(ethylene terephthalate) (PET) at constant heating rates were investigated using differential scanning calorimetry. It was found that the glass transition and crystallization temperature increased with the heating rates, while the melting temperature showed a little variation for the heating rates used. Crystallization and melting latent heats were remarkably constant, independent of the heating rate. Kinetics parameters were determined using Ozawa model. Two different kinetic regimes were identified, corresponding to primary and secondary crystallization, at low and high fractional crystallization, respectively, both following Ozawa’s model. Kinetics parameters were determined for the primary and secondary regimes; the pre-exponential constant (KT) and Ozawa’s exponent (m) decreased with increasing crystallization temperature. The combined kinetic parameter $Z = K_{\rm{T}}^{{\rm{1/}}m} $ increased exponentially with temperature; activation energies were estimated using Arrhenius plots for the two PET crystallization regimes.</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/jmr.2011.44</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Applied and Technical Physics ; Biomaterials ; Cold crystallization ; Glass transition ; Heating rate ; Inorganic Chemistry ; Materials Engineering ; Materials Science ; Mathematical models ; Melting ; Nanotechnology ; Polyethylene terephthalates ; Terephthalate</subject><ispartof>Journal of materials research, 2011-05, Vol.26 (9), p.1107-1115</ispartof><rights>Copyright © Materials Research Society 2011</rights><rights>The Materials Research Society 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-4a856001886d53fcce3b2887de70f5be7c34d0e4d9d5425ae69f879b6c6c4f943</citedby><cites>FETCH-LOGICAL-c407t-4a856001886d53fcce3b2887de70f5be7c34d0e4d9d5425ae69f879b6c6c4f943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/jmr.2011.44$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1557/jmr.2011.44$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wellen, Renate M.R.</creatorcontrib><creatorcontrib>Canedo, Eduardo</creatorcontrib><creatorcontrib>Rabello, Marcelo S.</creatorcontrib><title>Nonisothermal cold crystallization of poly(ethylene terephthalate)</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><description>The thermal transitions and the nonisothermal cold crystallization kinetics of poly(ethylene terephthalate) (PET) at constant heating rates were investigated using differential scanning calorimetry. It was found that the glass transition and crystallization temperature increased with the heating rates, while the melting temperature showed a little variation for the heating rates used. Crystallization and melting latent heats were remarkably constant, independent of the heating rate. Kinetics parameters were determined using Ozawa model. Two different kinetic regimes were identified, corresponding to primary and secondary crystallization, at low and high fractional crystallization, respectively, both following Ozawa’s model. Kinetics parameters were determined for the primary and secondary regimes; the pre-exponential constant (KT) and Ozawa’s exponent (m) decreased with increasing crystallization temperature. The combined kinetic parameter $Z = K_{\rm{T}}^{{\rm{1/}}m} $ increased exponentially with temperature; activation energies were estimated using Arrhenius plots for the two PET crystallization regimes.</description><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Cold crystallization</subject><subject>Glass transition</subject><subject>Heating rate</subject><subject>Inorganic Chemistry</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Melting</subject><subject>Nanotechnology</subject><subject>Polyethylene terephthalates</subject><subject>Terephthalate</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAURi0EEqUw8QIZiyDFTq4TZ4SKP6mCBWbLcW6aVE4cbHcIT0-qdoXpLkfn0z2EXDO6ZJzn99vOLRPK2BLghMwSChDzNMlOyYwKAXFSMDgnF95vKWWc5jAjj--2b70NDbpOmUhbU0XajT4oY9ofFVrbR7aOBmvGBYZmNNhjFNDh0IRGGRXw5pKc1cp4vDreOfl6fvpcvcbrj5e31cM61kDzEIMSPJt2hcgqntZaY1omQuQV5rTmJeY6hYoiVEXFIeEKs6IWeVFmOtNQF5DOyeLgHZz93qEPsmu9RmNUj3bnJePAIKU5Tyf09oBqZ713WMvBtZ1yo2RU7kvJqZTcl5KwF98daD9R_Qad3Nqd66df_sDjo1x1pWurDf7P_wLGV3p1</recordid><startdate>20110514</startdate><enddate>20110514</enddate><creator>Wellen, Renate M.R.</creator><creator>Canedo, Eduardo</creator><creator>Rabello, Marcelo S.</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20110514</creationdate><title>Nonisothermal cold crystallization of poly(ethylene terephthalate)</title><author>Wellen, Renate M.R. ; Canedo, Eduardo ; Rabello, Marcelo S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-4a856001886d53fcce3b2887de70f5be7c34d0e4d9d5425ae69f879b6c6c4f943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Cold crystallization</topic><topic>Glass transition</topic><topic>Heating rate</topic><topic>Inorganic Chemistry</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Melting</topic><topic>Nanotechnology</topic><topic>Polyethylene terephthalates</topic><topic>Terephthalate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wellen, Renate M.R.</creatorcontrib><creatorcontrib>Canedo, Eduardo</creatorcontrib><creatorcontrib>Rabello, Marcelo S.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wellen, Renate M.R.</au><au>Canedo, Eduardo</au><au>Rabello, Marcelo S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonisothermal cold crystallization of poly(ethylene terephthalate)</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><date>2011-05-14</date><risdate>2011</risdate><volume>26</volume><issue>9</issue><spage>1107</spage><epage>1115</epage><pages>1107-1115</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>The thermal transitions and the nonisothermal cold crystallization kinetics of poly(ethylene terephthalate) (PET) at constant heating rates were investigated using differential scanning calorimetry. It was found that the glass transition and crystallization temperature increased with the heating rates, while the melting temperature showed a little variation for the heating rates used. Crystallization and melting latent heats were remarkably constant, independent of the heating rate. Kinetics parameters were determined using Ozawa model. Two different kinetic regimes were identified, corresponding to primary and secondary crystallization, at low and high fractional crystallization, respectively, both following Ozawa’s model. Kinetics parameters were determined for the primary and secondary regimes; the pre-exponential constant (KT) and Ozawa’s exponent (m) decreased with increasing crystallization temperature. The combined kinetic parameter $Z = K_{\rm{T}}^{{\rm{1/}}m} $ increased exponentially with temperature; activation energies were estimated using Arrhenius plots for the two PET crystallization regimes.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/jmr.2011.44</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0884-2914
ispartof Journal of materials research, 2011-05, Vol.26 (9), p.1107-1115
issn 0884-2914
2044-5326
language eng
recordid cdi_proquest_miscellaneous_1541430753
source SpringerLink Journals
subjects Applied and Technical Physics
Biomaterials
Cold crystallization
Glass transition
Heating rate
Inorganic Chemistry
Materials Engineering
Materials Science
Mathematical models
Melting
Nanotechnology
Polyethylene terephthalates
Terephthalate
title Nonisothermal cold crystallization of poly(ethylene terephthalate)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A00%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonisothermal%20cold%20crystallization%20of%20poly(ethylene%20terephthalate)&rft.jtitle=Journal%20of%20materials%20research&rft.au=Wellen,%20Renate%20M.R.&rft.date=2011-05-14&rft.volume=26&rft.issue=9&rft.spage=1107&rft.epage=1115&rft.pages=1107-1115&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/jmr.2011.44&rft_dat=%3Cproquest_cross%3E1541430753%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1541430753&rft_id=info:pmid/&rft_cupid=10_1557_jmr_2011_44&rfr_iscdi=true