Sparsification and Stability of Simple Dynamic Binary Neural Networks

This letter studies the simple dynamic binary neural network characterized by signum activation function and ternary connection parameters. In order to control the sparsity of the connections and the stability of the stored signal, a simple evolutionary algorithm is presented. As a basic example of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences Communications and Computer Sciences, 2014/04/01, Vol.E97.A(4), pp.985-988
Hauptverfasser: MORIYASU, Jungo, SAITO, Toshimichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 988
container_issue 4
container_start_page 985
container_title IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
container_volume E97.A
creator MORIYASU, Jungo
SAITO, Toshimichi
description This letter studies the simple dynamic binary neural network characterized by signum activation function and ternary connection parameters. In order to control the sparsity of the connections and the stability of the stored signal, a simple evolutionary algorithm is presented. As a basic example of teacher signals, we consider a binary periodic orbit which corresponds to a control signal of ac-dc regulators. In the numerical experiment, applying the correlation-based learning, the periodic orbit can be stored. The sparsification can be effective to reinforce the stability of the periodic orbit.
doi_str_mv 10.1587/transfun.E97.A.985
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1541425557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1541425557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-c50e0714e72dc39118cff86f8cd2c9b809d47651cfe6fd81fbca13eef2812c8f3</originalsourceid><addsrcrecordid>eNpdkLFOwzAURS0EEqXwA0wZWRL8nDh2xlIKRapgKMyW69jgkjjBdoT69wQVisTy7nLP1dNB6BJwBpSz6-ilC2Zw2aJi2SyrOD1CE2AFTSHP2TGa4ArKlFPMT9FZCFuMgRMoJmix7qUP1lglo-1cIl2drKPc2MbGXdKZZG3bvtHJ7c7J1qrkxjrpd8mjHrxsxoifnX8P5-jEyCboi5-cope7xfN8ma6e7h_ms1WqKJA4Xqwxg0IzUqu8AuDKGF4armqiqg3HVV2wkoIyujQ1B7NREnKtDeFAFDf5FF3td3vffQw6RNHaoHTTSKe7IQigBRSEUsrGKtlXle9C8NqI3tt2_F0AFt_OxK8zMToTMzE6G6HlHtqGKF_1AZE-WtXo_0jxhx4q6k16oV3-Bafkfec</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1541425557</pqid></control><display><type>article</type><title>Sparsification and Stability of Simple Dynamic Binary Neural Networks</title><source>J-STAGE Free</source><creator>MORIYASU, Jungo ; SAITO, Toshimichi</creator><creatorcontrib>MORIYASU, Jungo ; SAITO, Toshimichi</creatorcontrib><description>This letter studies the simple dynamic binary neural network characterized by signum activation function and ternary connection parameters. In order to control the sparsity of the connections and the stability of the stored signal, a simple evolutionary algorithm is presented. As a basic example of teacher signals, we consider a binary periodic orbit which corresponds to a control signal of ac-dc regulators. In the numerical experiment, applying the correlation-based learning, the periodic orbit can be stored. The sparsification can be effective to reinforce the stability of the periodic orbit.</description><identifier>ISSN: 0916-8508</identifier><identifier>EISSN: 1745-1337</identifier><identifier>DOI: 10.1587/transfun.E97.A.985</identifier><language>eng</language><publisher>The Institute of Electronics, Information and Communication Engineers</publisher><subject>Dynamic tests ; Dynamics ; Joints ; Mathematical models ; multi-layer perceptron ; Neural networks ; Orbits ; Stability ; supervised learning ; switching power converters ; Teachers</subject><ispartof>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2014/04/01, Vol.E97.A(4), pp.985-988</ispartof><rights>2014 The Institute of Electronics, Information and Communication Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-c50e0714e72dc39118cff86f8cd2c9b809d47651cfe6fd81fbca13eef2812c8f3</citedby><cites>FETCH-LOGICAL-c512t-c50e0714e72dc39118cff86f8cd2c9b809d47651cfe6fd81fbca13eef2812c8f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1877,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>MORIYASU, Jungo</creatorcontrib><creatorcontrib>SAITO, Toshimichi</creatorcontrib><title>Sparsification and Stability of Simple Dynamic Binary Neural Networks</title><title>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</title><addtitle>IEICE Trans. Fundamentals</addtitle><description>This letter studies the simple dynamic binary neural network characterized by signum activation function and ternary connection parameters. In order to control the sparsity of the connections and the stability of the stored signal, a simple evolutionary algorithm is presented. As a basic example of teacher signals, we consider a binary periodic orbit which corresponds to a control signal of ac-dc regulators. In the numerical experiment, applying the correlation-based learning, the periodic orbit can be stored. The sparsification can be effective to reinforce the stability of the periodic orbit.</description><subject>Dynamic tests</subject><subject>Dynamics</subject><subject>Joints</subject><subject>Mathematical models</subject><subject>multi-layer perceptron</subject><subject>Neural networks</subject><subject>Orbits</subject><subject>Stability</subject><subject>supervised learning</subject><subject>switching power converters</subject><subject>Teachers</subject><issn>0916-8508</issn><issn>1745-1337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpdkLFOwzAURS0EEqXwA0wZWRL8nDh2xlIKRapgKMyW69jgkjjBdoT69wQVisTy7nLP1dNB6BJwBpSz6-ilC2Zw2aJi2SyrOD1CE2AFTSHP2TGa4ArKlFPMT9FZCFuMgRMoJmix7qUP1lglo-1cIl2drKPc2MbGXdKZZG3bvtHJ7c7J1qrkxjrpd8mjHrxsxoifnX8P5-jEyCboi5-cope7xfN8ma6e7h_ms1WqKJA4Xqwxg0IzUqu8AuDKGF4armqiqg3HVV2wkoIyujQ1B7NREnKtDeFAFDf5FF3td3vffQw6RNHaoHTTSKe7IQigBRSEUsrGKtlXle9C8NqI3tt2_F0AFt_OxK8zMToTMzE6G6HlHtqGKF_1AZE-WtXo_0jxhx4q6k16oV3-Bafkfec</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>MORIYASU, Jungo</creator><creator>SAITO, Toshimichi</creator><general>The Institute of Electronics, Information and Communication Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2014</creationdate><title>Sparsification and Stability of Simple Dynamic Binary Neural Networks</title><author>MORIYASU, Jungo ; SAITO, Toshimichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-c50e0714e72dc39118cff86f8cd2c9b809d47651cfe6fd81fbca13eef2812c8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Dynamic tests</topic><topic>Dynamics</topic><topic>Joints</topic><topic>Mathematical models</topic><topic>multi-layer perceptron</topic><topic>Neural networks</topic><topic>Orbits</topic><topic>Stability</topic><topic>supervised learning</topic><topic>switching power converters</topic><topic>Teachers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MORIYASU, Jungo</creatorcontrib><creatorcontrib>SAITO, Toshimichi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MORIYASU, Jungo</au><au>SAITO, Toshimichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sparsification and Stability of Simple Dynamic Binary Neural Networks</atitle><jtitle>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</jtitle><addtitle>IEICE Trans. Fundamentals</addtitle><date>2014</date><risdate>2014</risdate><volume>E97.A</volume><issue>4</issue><spage>985</spage><epage>988</epage><pages>985-988</pages><issn>0916-8508</issn><eissn>1745-1337</eissn><abstract>This letter studies the simple dynamic binary neural network characterized by signum activation function and ternary connection parameters. In order to control the sparsity of the connections and the stability of the stored signal, a simple evolutionary algorithm is presented. As a basic example of teacher signals, we consider a binary periodic orbit which corresponds to a control signal of ac-dc regulators. In the numerical experiment, applying the correlation-based learning, the periodic orbit can be stored. The sparsification can be effective to reinforce the stability of the periodic orbit.</abstract><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transfun.E97.A.985</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0916-8508
ispartof IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2014/04/01, Vol.E97.A(4), pp.985-988
issn 0916-8508
1745-1337
language eng
recordid cdi_proquest_miscellaneous_1541425557
source J-STAGE Free
subjects Dynamic tests
Dynamics
Joints
Mathematical models
multi-layer perceptron
Neural networks
Orbits
Stability
supervised learning
switching power converters
Teachers
title Sparsification and Stability of Simple Dynamic Binary Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A08%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sparsification%20and%20Stability%20of%20Simple%20Dynamic%20Binary%20Neural%20Networks&rft.jtitle=IEICE%20Transactions%20on%20Fundamentals%20of%20Electronics,%20Communications%20and%20Computer%20Sciences&rft.au=MORIYASU,%20Jungo&rft.date=2014&rft.volume=E97.A&rft.issue=4&rft.spage=985&rft.epage=988&rft.pages=985-988&rft.issn=0916-8508&rft.eissn=1745-1337&rft_id=info:doi/10.1587/transfun.E97.A.985&rft_dat=%3Cproquest_cross%3E1541425557%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1541425557&rft_id=info:pmid/&rfr_iscdi=true