Experimental determination of the finite-temperature phase diagram of a spin–orbit coupled Bose gas

Spin–orbit (SO) coupling leads to numerous phenomena in electron systems. Artificial SO coupling in ultracold neutral atoms provides the opportunity to study such phenomena in bosonic systems, which exhibit superfluidity and various symmetry-breaking condensate phases. In general, a richer structure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2014-04, Vol.10 (4), p.314-320
Hauptverfasser: Ji, Si-Cong, Zhang, Jin-Yi, Zhang, Long, Du, Zhi-Dong, Zheng, Wei, Deng, You-Jin, Zhai, Hui, Chen, Shuai, Pan, Jian-Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 320
container_issue 4
container_start_page 314
container_title Nature physics
container_volume 10
creator Ji, Si-Cong
Zhang, Jin-Yi
Zhang, Long
Du, Zhi-Dong
Zheng, Wei
Deng, You-Jin
Zhai, Hui
Chen, Shuai
Pan, Jian-Wei
description Spin–orbit (SO) coupling leads to numerous phenomena in electron systems. Artificial SO coupling in ultracold neutral atoms provides the opportunity to study such phenomena in bosonic systems, which exhibit superfluidity and various symmetry-breaking condensate phases. In general, a richer structure of symmetry breaking results in a nontrivial finite-temperature phase diagram, but the thermodynamics of the SO-coupled Bose gas at finite temperature remains unknown both in theory and experiment. Here we experimentally determine a new finite-temperature phase transition that is consistent with the transition between the stripe ordered phase and the magnetized phase. We also observe that the magnetic phase and the Bose condensate transitions occur simultaneously as temperature decreases. We determine the entire finite-temperature phase diagram of the SO-coupled Bose gas, thus illustrating the power of quantum simulation. Spin–orbit coupling in Bose gases is expected to lead to new phenomena, but the thermodynamic properties are not yet fully understood. An ultracold atom experiment using artificial spin–orbit coupling uncovers the finite-temperature phase diagram and a transition between a stripe-ordered and a magnetized phase.
doi_str_mv 10.1038/nphys2905
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1541424487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3262994781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-241695412cc72807ddae266b85e357be37030f4a8ca7243afac85e109755d4093</originalsourceid><addsrcrecordid>eNpl0MtKAzEUBuAgCtbqwjcIuFGhmttMZpZa6gUEN7oe0syZNmUmGZMM2J3v4Bv6JKZUiujqHDgfP4cfoVNKrijhxbXtl-vASpLtoRGVIpswUdD93S75IToKYUWIYDnlIwSz9x686cBG1eIaIvjOWBWNs9g1OC4BN8aaCJMIXZIqDh5wv1QBcG3Uwqtu4xQOvbFfH5_Oz03E2g19CzW-dYktVDhGB41qA5z8zDF6vZu9TB8mT8_3j9Obp4nmJY3pP5qXmaBMa8kKIutaAcvzeZEBz-QcuCScNEIVWkkmuGqUTidKSplltSAlH6PzbW7v3dsAIVadCRraVllwQ6hoChdMiEImevaHrtzgbfouKUqLjBK2URdbpb0LwUNT9aks5dcVJdWm8GpXeLKXWxuSsQvwvxL_4W_01oNS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1511851027</pqid></control><display><type>article</type><title>Experimental determination of the finite-temperature phase diagram of a spin–orbit coupled Bose gas</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Ji, Si-Cong ; Zhang, Jin-Yi ; Zhang, Long ; Du, Zhi-Dong ; Zheng, Wei ; Deng, You-Jin ; Zhai, Hui ; Chen, Shuai ; Pan, Jian-Wei</creator><creatorcontrib>Ji, Si-Cong ; Zhang, Jin-Yi ; Zhang, Long ; Du, Zhi-Dong ; Zheng, Wei ; Deng, You-Jin ; Zhai, Hui ; Chen, Shuai ; Pan, Jian-Wei</creatorcontrib><description>Spin–orbit (SO) coupling leads to numerous phenomena in electron systems. Artificial SO coupling in ultracold neutral atoms provides the opportunity to study such phenomena in bosonic systems, which exhibit superfluidity and various symmetry-breaking condensate phases. In general, a richer structure of symmetry breaking results in a nontrivial finite-temperature phase diagram, but the thermodynamics of the SO-coupled Bose gas at finite temperature remains unknown both in theory and experiment. Here we experimentally determine a new finite-temperature phase transition that is consistent with the transition between the stripe ordered phase and the magnetized phase. We also observe that the magnetic phase and the Bose condensate transitions occur simultaneously as temperature decreases. We determine the entire finite-temperature phase diagram of the SO-coupled Bose gas, thus illustrating the power of quantum simulation. Spin–orbit coupling in Bose gases is expected to lead to new phenomena, but the thermodynamic properties are not yet fully understood. An ultracold atom experiment using artificial spin–orbit coupling uncovers the finite-temperature phase diagram and a transition between a stripe-ordered and a magnetized phase.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/nphys2905</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119/2791 ; 639/766/119/2795 ; 639/766/36/1125 ; Atomic ; Atoms &amp; subatomic particles ; Broken symmetry ; Classical and Continuum Physics ; Complex Systems ; Condensates ; Condensed Matter Physics ; Electrons ; Finite element analysis ; Gases ; Joining ; Mathematical analysis ; Mathematical and Computational Physics ; Molecular ; Neutral atoms ; Optical and Plasma Physics ; Orbits ; Phase diagrams ; Phase transformations ; Physics ; Simulation ; Spinning ; Theoretical ; Thermodynamics</subject><ispartof>Nature physics, 2014-04, Vol.10 (4), p.314-320</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group Apr 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-241695412cc72807ddae266b85e357be37030f4a8ca7243afac85e109755d4093</citedby><cites>FETCH-LOGICAL-c391t-241695412cc72807ddae266b85e357be37030f4a8ca7243afac85e109755d4093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nphys2905$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nphys2905$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ji, Si-Cong</creatorcontrib><creatorcontrib>Zhang, Jin-Yi</creatorcontrib><creatorcontrib>Zhang, Long</creatorcontrib><creatorcontrib>Du, Zhi-Dong</creatorcontrib><creatorcontrib>Zheng, Wei</creatorcontrib><creatorcontrib>Deng, You-Jin</creatorcontrib><creatorcontrib>Zhai, Hui</creatorcontrib><creatorcontrib>Chen, Shuai</creatorcontrib><creatorcontrib>Pan, Jian-Wei</creatorcontrib><title>Experimental determination of the finite-temperature phase diagram of a spin–orbit coupled Bose gas</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>Spin–orbit (SO) coupling leads to numerous phenomena in electron systems. Artificial SO coupling in ultracold neutral atoms provides the opportunity to study such phenomena in bosonic systems, which exhibit superfluidity and various symmetry-breaking condensate phases. In general, a richer structure of symmetry breaking results in a nontrivial finite-temperature phase diagram, but the thermodynamics of the SO-coupled Bose gas at finite temperature remains unknown both in theory and experiment. Here we experimentally determine a new finite-temperature phase transition that is consistent with the transition between the stripe ordered phase and the magnetized phase. We also observe that the magnetic phase and the Bose condensate transitions occur simultaneously as temperature decreases. We determine the entire finite-temperature phase diagram of the SO-coupled Bose gas, thus illustrating the power of quantum simulation. Spin–orbit coupling in Bose gases is expected to lead to new phenomena, but the thermodynamic properties are not yet fully understood. An ultracold atom experiment using artificial spin–orbit coupling uncovers the finite-temperature phase diagram and a transition between a stripe-ordered and a magnetized phase.</description><subject>639/766/119/2791</subject><subject>639/766/119/2795</subject><subject>639/766/36/1125</subject><subject>Atomic</subject><subject>Atoms &amp; subatomic particles</subject><subject>Broken symmetry</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensates</subject><subject>Condensed Matter Physics</subject><subject>Electrons</subject><subject>Finite element analysis</subject><subject>Gases</subject><subject>Joining</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Neutral atoms</subject><subject>Optical and Plasma Physics</subject><subject>Orbits</subject><subject>Phase diagrams</subject><subject>Phase transformations</subject><subject>Physics</subject><subject>Simulation</subject><subject>Spinning</subject><subject>Theoretical</subject><subject>Thermodynamics</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpl0MtKAzEUBuAgCtbqwjcIuFGhmttMZpZa6gUEN7oe0syZNmUmGZMM2J3v4Bv6JKZUiujqHDgfP4cfoVNKrijhxbXtl-vASpLtoRGVIpswUdD93S75IToKYUWIYDnlIwSz9x686cBG1eIaIvjOWBWNs9g1OC4BN8aaCJMIXZIqDh5wv1QBcG3Uwqtu4xQOvbFfH5_Oz03E2g19CzW-dYktVDhGB41qA5z8zDF6vZu9TB8mT8_3j9Obp4nmJY3pP5qXmaBMa8kKIutaAcvzeZEBz-QcuCScNEIVWkkmuGqUTidKSplltSAlH6PzbW7v3dsAIVadCRraVllwQ6hoChdMiEImevaHrtzgbfouKUqLjBK2URdbpb0LwUNT9aks5dcVJdWm8GpXeLKXWxuSsQvwvxL_4W_01oNS</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Ji, Si-Cong</creator><creator>Zhang, Jin-Yi</creator><creator>Zhang, Long</creator><creator>Du, Zhi-Dong</creator><creator>Zheng, Wei</creator><creator>Deng, You-Jin</creator><creator>Zhai, Hui</creator><creator>Chen, Shuai</creator><creator>Pan, Jian-Wei</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20140401</creationdate><title>Experimental determination of the finite-temperature phase diagram of a spin–orbit coupled Bose gas</title><author>Ji, Si-Cong ; Zhang, Jin-Yi ; Zhang, Long ; Du, Zhi-Dong ; Zheng, Wei ; Deng, You-Jin ; Zhai, Hui ; Chen, Shuai ; Pan, Jian-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-241695412cc72807ddae266b85e357be37030f4a8ca7243afac85e109755d4093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>639/766/119/2791</topic><topic>639/766/119/2795</topic><topic>639/766/36/1125</topic><topic>Atomic</topic><topic>Atoms &amp; subatomic particles</topic><topic>Broken symmetry</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensates</topic><topic>Condensed Matter Physics</topic><topic>Electrons</topic><topic>Finite element analysis</topic><topic>Gases</topic><topic>Joining</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Neutral atoms</topic><topic>Optical and Plasma Physics</topic><topic>Orbits</topic><topic>Phase diagrams</topic><topic>Phase transformations</topic><topic>Physics</topic><topic>Simulation</topic><topic>Spinning</topic><topic>Theoretical</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Si-Cong</creatorcontrib><creatorcontrib>Zhang, Jin-Yi</creatorcontrib><creatorcontrib>Zhang, Long</creatorcontrib><creatorcontrib>Du, Zhi-Dong</creatorcontrib><creatorcontrib>Zheng, Wei</creatorcontrib><creatorcontrib>Deng, You-Jin</creatorcontrib><creatorcontrib>Zhai, Hui</creatorcontrib><creatorcontrib>Chen, Shuai</creatorcontrib><creatorcontrib>Pan, Jian-Wei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Si-Cong</au><au>Zhang, Jin-Yi</au><au>Zhang, Long</au><au>Du, Zhi-Dong</au><au>Zheng, Wei</au><au>Deng, You-Jin</au><au>Zhai, Hui</au><au>Chen, Shuai</au><au>Pan, Jian-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental determination of the finite-temperature phase diagram of a spin–orbit coupled Bose gas</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2014-04-01</date><risdate>2014</risdate><volume>10</volume><issue>4</issue><spage>314</spage><epage>320</epage><pages>314-320</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Spin–orbit (SO) coupling leads to numerous phenomena in electron systems. Artificial SO coupling in ultracold neutral atoms provides the opportunity to study such phenomena in bosonic systems, which exhibit superfluidity and various symmetry-breaking condensate phases. In general, a richer structure of symmetry breaking results in a nontrivial finite-temperature phase diagram, but the thermodynamics of the SO-coupled Bose gas at finite temperature remains unknown both in theory and experiment. Here we experimentally determine a new finite-temperature phase transition that is consistent with the transition between the stripe ordered phase and the magnetized phase. We also observe that the magnetic phase and the Bose condensate transitions occur simultaneously as temperature decreases. We determine the entire finite-temperature phase diagram of the SO-coupled Bose gas, thus illustrating the power of quantum simulation. Spin–orbit coupling in Bose gases is expected to lead to new phenomena, but the thermodynamic properties are not yet fully understood. An ultracold atom experiment using artificial spin–orbit coupling uncovers the finite-temperature phase diagram and a transition between a stripe-ordered and a magnetized phase.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys2905</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2014-04, Vol.10 (4), p.314-320
issn 1745-2473
1745-2481
language eng
recordid cdi_proquest_miscellaneous_1541424487
source SpringerLink Journals; Nature Journals Online
subjects 639/766/119/2791
639/766/119/2795
639/766/36/1125
Atomic
Atoms & subatomic particles
Broken symmetry
Classical and Continuum Physics
Complex Systems
Condensates
Condensed Matter Physics
Electrons
Finite element analysis
Gases
Joining
Mathematical analysis
Mathematical and Computational Physics
Molecular
Neutral atoms
Optical and Plasma Physics
Orbits
Phase diagrams
Phase transformations
Physics
Simulation
Spinning
Theoretical
Thermodynamics
title Experimental determination of the finite-temperature phase diagram of a spin–orbit coupled Bose gas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A39%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20determination%20of%20the%20finite-temperature%20phase%20diagram%20of%20a%20spin%E2%80%93orbit%20coupled%20Bose%20gas&rft.jtitle=Nature%20physics&rft.au=Ji,%20Si-Cong&rft.date=2014-04-01&rft.volume=10&rft.issue=4&rft.spage=314&rft.epage=320&rft.pages=314-320&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys2905&rft_dat=%3Cproquest_cross%3E3262994781%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1511851027&rft_id=info:pmid/&rfr_iscdi=true