Experimental determination of the finite-temperature phase diagram of a spin–orbit coupled Bose gas
Spin–orbit (SO) coupling leads to numerous phenomena in electron systems. Artificial SO coupling in ultracold neutral atoms provides the opportunity to study such phenomena in bosonic systems, which exhibit superfluidity and various symmetry-breaking condensate phases. In general, a richer structure...
Gespeichert in:
Veröffentlicht in: | Nature physics 2014-04, Vol.10 (4), p.314-320 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 320 |
---|---|
container_issue | 4 |
container_start_page | 314 |
container_title | Nature physics |
container_volume | 10 |
creator | Ji, Si-Cong Zhang, Jin-Yi Zhang, Long Du, Zhi-Dong Zheng, Wei Deng, You-Jin Zhai, Hui Chen, Shuai Pan, Jian-Wei |
description | Spin–orbit (SO) coupling leads to numerous phenomena in electron systems. Artificial SO coupling in ultracold neutral atoms provides the opportunity to study such phenomena in bosonic systems, which exhibit superfluidity and various symmetry-breaking condensate phases. In general, a richer structure of symmetry breaking results in a nontrivial finite-temperature phase diagram, but the thermodynamics of the SO-coupled Bose gas at finite temperature remains unknown both in theory and experiment. Here we experimentally determine a new finite-temperature phase transition that is consistent with the transition between the stripe ordered phase and the magnetized phase. We also observe that the magnetic phase and the Bose condensate transitions occur simultaneously as temperature decreases. We determine the entire finite-temperature phase diagram of the SO-coupled Bose gas, thus illustrating the power of quantum simulation.
Spin–orbit coupling in Bose gases is expected to lead to new phenomena, but the thermodynamic properties are not yet fully understood. An ultracold atom experiment using artificial spin–orbit coupling uncovers the finite-temperature phase diagram and a transition between a stripe-ordered and a magnetized phase. |
doi_str_mv | 10.1038/nphys2905 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1541424487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3262994781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-241695412cc72807ddae266b85e357be37030f4a8ca7243afac85e109755d4093</originalsourceid><addsrcrecordid>eNpl0MtKAzEUBuAgCtbqwjcIuFGhmttMZpZa6gUEN7oe0syZNmUmGZMM2J3v4Bv6JKZUiujqHDgfP4cfoVNKrijhxbXtl-vASpLtoRGVIpswUdD93S75IToKYUWIYDnlIwSz9x686cBG1eIaIvjOWBWNs9g1OC4BN8aaCJMIXZIqDh5wv1QBcG3Uwqtu4xQOvbFfH5_Oz03E2g19CzW-dYktVDhGB41qA5z8zDF6vZu9TB8mT8_3j9Obp4nmJY3pP5qXmaBMa8kKIutaAcvzeZEBz-QcuCScNEIVWkkmuGqUTidKSplltSAlH6PzbW7v3dsAIVadCRraVllwQ6hoChdMiEImevaHrtzgbfouKUqLjBK2URdbpb0LwUNT9aks5dcVJdWm8GpXeLKXWxuSsQvwvxL_4W_01oNS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1511851027</pqid></control><display><type>article</type><title>Experimental determination of the finite-temperature phase diagram of a spin–orbit coupled Bose gas</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Ji, Si-Cong ; Zhang, Jin-Yi ; Zhang, Long ; Du, Zhi-Dong ; Zheng, Wei ; Deng, You-Jin ; Zhai, Hui ; Chen, Shuai ; Pan, Jian-Wei</creator><creatorcontrib>Ji, Si-Cong ; Zhang, Jin-Yi ; Zhang, Long ; Du, Zhi-Dong ; Zheng, Wei ; Deng, You-Jin ; Zhai, Hui ; Chen, Shuai ; Pan, Jian-Wei</creatorcontrib><description>Spin–orbit (SO) coupling leads to numerous phenomena in electron systems. Artificial SO coupling in ultracold neutral atoms provides the opportunity to study such phenomena in bosonic systems, which exhibit superfluidity and various symmetry-breaking condensate phases. In general, a richer structure of symmetry breaking results in a nontrivial finite-temperature phase diagram, but the thermodynamics of the SO-coupled Bose gas at finite temperature remains unknown both in theory and experiment. Here we experimentally determine a new finite-temperature phase transition that is consistent with the transition between the stripe ordered phase and the magnetized phase. We also observe that the magnetic phase and the Bose condensate transitions occur simultaneously as temperature decreases. We determine the entire finite-temperature phase diagram of the SO-coupled Bose gas, thus illustrating the power of quantum simulation.
Spin–orbit coupling in Bose gases is expected to lead to new phenomena, but the thermodynamic properties are not yet fully understood. An ultracold atom experiment using artificial spin–orbit coupling uncovers the finite-temperature phase diagram and a transition between a stripe-ordered and a magnetized phase.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/nphys2905</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119/2791 ; 639/766/119/2795 ; 639/766/36/1125 ; Atomic ; Atoms & subatomic particles ; Broken symmetry ; Classical and Continuum Physics ; Complex Systems ; Condensates ; Condensed Matter Physics ; Electrons ; Finite element analysis ; Gases ; Joining ; Mathematical analysis ; Mathematical and Computational Physics ; Molecular ; Neutral atoms ; Optical and Plasma Physics ; Orbits ; Phase diagrams ; Phase transformations ; Physics ; Simulation ; Spinning ; Theoretical ; Thermodynamics</subject><ispartof>Nature physics, 2014-04, Vol.10 (4), p.314-320</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group Apr 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-241695412cc72807ddae266b85e357be37030f4a8ca7243afac85e109755d4093</citedby><cites>FETCH-LOGICAL-c391t-241695412cc72807ddae266b85e357be37030f4a8ca7243afac85e109755d4093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nphys2905$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nphys2905$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ji, Si-Cong</creatorcontrib><creatorcontrib>Zhang, Jin-Yi</creatorcontrib><creatorcontrib>Zhang, Long</creatorcontrib><creatorcontrib>Du, Zhi-Dong</creatorcontrib><creatorcontrib>Zheng, Wei</creatorcontrib><creatorcontrib>Deng, You-Jin</creatorcontrib><creatorcontrib>Zhai, Hui</creatorcontrib><creatorcontrib>Chen, Shuai</creatorcontrib><creatorcontrib>Pan, Jian-Wei</creatorcontrib><title>Experimental determination of the finite-temperature phase diagram of a spin–orbit coupled Bose gas</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>Spin–orbit (SO) coupling leads to numerous phenomena in electron systems. Artificial SO coupling in ultracold neutral atoms provides the opportunity to study such phenomena in bosonic systems, which exhibit superfluidity and various symmetry-breaking condensate phases. In general, a richer structure of symmetry breaking results in a nontrivial finite-temperature phase diagram, but the thermodynamics of the SO-coupled Bose gas at finite temperature remains unknown both in theory and experiment. Here we experimentally determine a new finite-temperature phase transition that is consistent with the transition between the stripe ordered phase and the magnetized phase. We also observe that the magnetic phase and the Bose condensate transitions occur simultaneously as temperature decreases. We determine the entire finite-temperature phase diagram of the SO-coupled Bose gas, thus illustrating the power of quantum simulation.
Spin–orbit coupling in Bose gases is expected to lead to new phenomena, but the thermodynamic properties are not yet fully understood. An ultracold atom experiment using artificial spin–orbit coupling uncovers the finite-temperature phase diagram and a transition between a stripe-ordered and a magnetized phase.</description><subject>639/766/119/2791</subject><subject>639/766/119/2795</subject><subject>639/766/36/1125</subject><subject>Atomic</subject><subject>Atoms & subatomic particles</subject><subject>Broken symmetry</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensates</subject><subject>Condensed Matter Physics</subject><subject>Electrons</subject><subject>Finite element analysis</subject><subject>Gases</subject><subject>Joining</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Neutral atoms</subject><subject>Optical and Plasma Physics</subject><subject>Orbits</subject><subject>Phase diagrams</subject><subject>Phase transformations</subject><subject>Physics</subject><subject>Simulation</subject><subject>Spinning</subject><subject>Theoretical</subject><subject>Thermodynamics</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpl0MtKAzEUBuAgCtbqwjcIuFGhmttMZpZa6gUEN7oe0syZNmUmGZMM2J3v4Bv6JKZUiujqHDgfP4cfoVNKrijhxbXtl-vASpLtoRGVIpswUdD93S75IToKYUWIYDnlIwSz9x686cBG1eIaIvjOWBWNs9g1OC4BN8aaCJMIXZIqDh5wv1QBcG3Uwqtu4xQOvbFfH5_Oz03E2g19CzW-dYktVDhGB41qA5z8zDF6vZu9TB8mT8_3j9Obp4nmJY3pP5qXmaBMa8kKIutaAcvzeZEBz-QcuCScNEIVWkkmuGqUTidKSplltSAlH6PzbW7v3dsAIVadCRraVllwQ6hoChdMiEImevaHrtzgbfouKUqLjBK2URdbpb0LwUNT9aks5dcVJdWm8GpXeLKXWxuSsQvwvxL_4W_01oNS</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Ji, Si-Cong</creator><creator>Zhang, Jin-Yi</creator><creator>Zhang, Long</creator><creator>Du, Zhi-Dong</creator><creator>Zheng, Wei</creator><creator>Deng, You-Jin</creator><creator>Zhai, Hui</creator><creator>Chen, Shuai</creator><creator>Pan, Jian-Wei</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20140401</creationdate><title>Experimental determination of the finite-temperature phase diagram of a spin–orbit coupled Bose gas</title><author>Ji, Si-Cong ; Zhang, Jin-Yi ; Zhang, Long ; Du, Zhi-Dong ; Zheng, Wei ; Deng, You-Jin ; Zhai, Hui ; Chen, Shuai ; Pan, Jian-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-241695412cc72807ddae266b85e357be37030f4a8ca7243afac85e109755d4093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>639/766/119/2791</topic><topic>639/766/119/2795</topic><topic>639/766/36/1125</topic><topic>Atomic</topic><topic>Atoms & subatomic particles</topic><topic>Broken symmetry</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensates</topic><topic>Condensed Matter Physics</topic><topic>Electrons</topic><topic>Finite element analysis</topic><topic>Gases</topic><topic>Joining</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Neutral atoms</topic><topic>Optical and Plasma Physics</topic><topic>Orbits</topic><topic>Phase diagrams</topic><topic>Phase transformations</topic><topic>Physics</topic><topic>Simulation</topic><topic>Spinning</topic><topic>Theoretical</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Si-Cong</creatorcontrib><creatorcontrib>Zhang, Jin-Yi</creatorcontrib><creatorcontrib>Zhang, Long</creatorcontrib><creatorcontrib>Du, Zhi-Dong</creatorcontrib><creatorcontrib>Zheng, Wei</creatorcontrib><creatorcontrib>Deng, You-Jin</creatorcontrib><creatorcontrib>Zhai, Hui</creatorcontrib><creatorcontrib>Chen, Shuai</creatorcontrib><creatorcontrib>Pan, Jian-Wei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Si-Cong</au><au>Zhang, Jin-Yi</au><au>Zhang, Long</au><au>Du, Zhi-Dong</au><au>Zheng, Wei</au><au>Deng, You-Jin</au><au>Zhai, Hui</au><au>Chen, Shuai</au><au>Pan, Jian-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental determination of the finite-temperature phase diagram of a spin–orbit coupled Bose gas</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2014-04-01</date><risdate>2014</risdate><volume>10</volume><issue>4</issue><spage>314</spage><epage>320</epage><pages>314-320</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Spin–orbit (SO) coupling leads to numerous phenomena in electron systems. Artificial SO coupling in ultracold neutral atoms provides the opportunity to study such phenomena in bosonic systems, which exhibit superfluidity and various symmetry-breaking condensate phases. In general, a richer structure of symmetry breaking results in a nontrivial finite-temperature phase diagram, but the thermodynamics of the SO-coupled Bose gas at finite temperature remains unknown both in theory and experiment. Here we experimentally determine a new finite-temperature phase transition that is consistent with the transition between the stripe ordered phase and the magnetized phase. We also observe that the magnetic phase and the Bose condensate transitions occur simultaneously as temperature decreases. We determine the entire finite-temperature phase diagram of the SO-coupled Bose gas, thus illustrating the power of quantum simulation.
Spin–orbit coupling in Bose gases is expected to lead to new phenomena, but the thermodynamic properties are not yet fully understood. An ultracold atom experiment using artificial spin–orbit coupling uncovers the finite-temperature phase diagram and a transition between a stripe-ordered and a magnetized phase.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys2905</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2014-04, Vol.10 (4), p.314-320 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_proquest_miscellaneous_1541424487 |
source | SpringerLink Journals; Nature Journals Online |
subjects | 639/766/119/2791 639/766/119/2795 639/766/36/1125 Atomic Atoms & subatomic particles Broken symmetry Classical and Continuum Physics Complex Systems Condensates Condensed Matter Physics Electrons Finite element analysis Gases Joining Mathematical analysis Mathematical and Computational Physics Molecular Neutral atoms Optical and Plasma Physics Orbits Phase diagrams Phase transformations Physics Simulation Spinning Theoretical Thermodynamics |
title | Experimental determination of the finite-temperature phase diagram of a spin–orbit coupled Bose gas |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A39%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20determination%20of%20the%20finite-temperature%20phase%20diagram%20of%20a%20spin%E2%80%93orbit%20coupled%20Bose%20gas&rft.jtitle=Nature%20physics&rft.au=Ji,%20Si-Cong&rft.date=2014-04-01&rft.volume=10&rft.issue=4&rft.spage=314&rft.epage=320&rft.pages=314-320&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys2905&rft_dat=%3Cproquest_cross%3E3262994781%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1511851027&rft_id=info:pmid/&rfr_iscdi=true |