A Multinomial Hidden Markov Model and its training by a combined iterative procedure

The paper proposes a new extension of Hidden Markov Models (HMM) for communication systems by allowing the Markovian transitions between the channel's states to be influenced by some external catalyzers (e.g. environmental or experimental conditions). The stochastic influence of the catalyzers...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ai communications 2014, Vol.27 (2), p.143-155
Hauptverfasser: Cidota, Marina A., Dumitrescu, Monica
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 155
container_issue 2
container_start_page 143
container_title Ai communications
container_volume 27
creator Cidota, Marina A.
Dumitrescu, Monica
description The paper proposes a new extension of Hidden Markov Models (HMM) for communication systems by allowing the Markovian transitions between the channel's states to be influenced by some external catalyzers (e.g. environmental or experimental conditions). The stochastic influence of the catalyzers is expressed by multinomial link functions. We introduce a combined iterative training procedure, with the BaumWelch algorithm as a framework, including some nested algorithms such as the NewtonRaphson and the ExpectationMaximization (EM) algorithms. The monotony of the log-likelihood function associated with our procedure is proven. A simulation study is provided in order to prove the good performances of the proposed combined iterative training procedure. We consider that the Multinomial HMM will be an important and useful extension of HMM in bioinformatics and biostatistics, due to the possible applications in modeling the hidden ion channels whose states could be influenced by external factors.
doi_str_mv 10.3233/AIC-130589
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1541423409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1541423409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-db7876b78b8b4f79f94baa6a1d971aade90df0b8fb85678bdcf90d8ad1bb6e893</originalsourceid><addsrcrecordid>eNotkE1LAzEQhnNQsFYv_oIcRVhNNvuVYylqC1281HOYbCYS3U1qslvov3dLvczAvA_zwkPIA2fPIhfiZbVdZ1ywspFXZMFkzrOa59UNuU3pmzGW56JckP2KtlM_Oh8GBz3dOGPQ0xbiTzjSNhjsKXhD3ZjoGMF557-oPlGgXRi083iOMMLojkgPMXRopoh35NpCn_D-fy_J59vrfr3Jdh_v2_Vql3Vz-ZgZXTd1NQ_d6MLW0spCA1TAjaw5gEHJjGW6sbopq5kynZ0vDRiudYWNFEvyePk7N_9OmEY1uNRh34PHMCXFy4IXuSjYGX26oF0MKUW06hDdAPGkOFNnXWrWpS66xB8TY1_2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1541423409</pqid></control><display><type>article</type><title>A Multinomial Hidden Markov Model and its training by a combined iterative procedure</title><source>EBSCOhost Business Source Complete</source><creator>Cidota, Marina A. ; Dumitrescu, Monica</creator><creatorcontrib>Cidota, Marina A. ; Dumitrescu, Monica</creatorcontrib><description>The paper proposes a new extension of Hidden Markov Models (HMM) for communication systems by allowing the Markovian transitions between the channel's states to be influenced by some external catalyzers (e.g. environmental or experimental conditions). The stochastic influence of the catalyzers is expressed by multinomial link functions. We introduce a combined iterative training procedure, with the BaumWelch algorithm as a framework, including some nested algorithms such as the NewtonRaphson and the ExpectationMaximization (EM) algorithms. The monotony of the log-likelihood function associated with our procedure is proven. A simulation study is provided in order to prove the good performances of the proposed combined iterative training procedure. We consider that the Multinomial HMM will be an important and useful extension of HMM in bioinformatics and biostatistics, due to the possible applications in modeling the hidden ion channels whose states could be influenced by external factors.</description><identifier>ISSN: 0921-7126</identifier><identifier>DOI: 10.3233/AIC-130589</identifier><language>eng</language><subject>Algorithms ; Artificial intelligence ; Bioinformatics ; Communication systems ; Ion channels ; Iterative methods ; Mathematical models ; Training</subject><ispartof>Ai communications, 2014, Vol.27 (2), p.143-155</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Cidota, Marina A.</creatorcontrib><creatorcontrib>Dumitrescu, Monica</creatorcontrib><title>A Multinomial Hidden Markov Model and its training by a combined iterative procedure</title><title>Ai communications</title><description>The paper proposes a new extension of Hidden Markov Models (HMM) for communication systems by allowing the Markovian transitions between the channel's states to be influenced by some external catalyzers (e.g. environmental or experimental conditions). The stochastic influence of the catalyzers is expressed by multinomial link functions. We introduce a combined iterative training procedure, with the BaumWelch algorithm as a framework, including some nested algorithms such as the NewtonRaphson and the ExpectationMaximization (EM) algorithms. The monotony of the log-likelihood function associated with our procedure is proven. A simulation study is provided in order to prove the good performances of the proposed combined iterative training procedure. We consider that the Multinomial HMM will be an important and useful extension of HMM in bioinformatics and biostatistics, due to the possible applications in modeling the hidden ion channels whose states could be influenced by external factors.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Bioinformatics</subject><subject>Communication systems</subject><subject>Ion channels</subject><subject>Iterative methods</subject><subject>Mathematical models</subject><subject>Training</subject><issn>0921-7126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEQhnNQsFYv_oIcRVhNNvuVYylqC1281HOYbCYS3U1qslvov3dLvczAvA_zwkPIA2fPIhfiZbVdZ1ywspFXZMFkzrOa59UNuU3pmzGW56JckP2KtlM_Oh8GBz3dOGPQ0xbiTzjSNhjsKXhD3ZjoGMF557-oPlGgXRi083iOMMLojkgPMXRopoh35NpCn_D-fy_J59vrfr3Jdh_v2_Vql3Vz-ZgZXTd1NQ_d6MLW0spCA1TAjaw5gEHJjGW6sbopq5kynZ0vDRiudYWNFEvyePk7N_9OmEY1uNRh34PHMCXFy4IXuSjYGX26oF0MKUW06hDdAPGkOFNnXWrWpS66xB8TY1_2</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Cidota, Marina A.</creator><creator>Dumitrescu, Monica</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2014</creationdate><title>A Multinomial Hidden Markov Model and its training by a combined iterative procedure</title><author>Cidota, Marina A. ; Dumitrescu, Monica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-db7876b78b8b4f79f94baa6a1d971aade90df0b8fb85678bdcf90d8ad1bb6e893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Bioinformatics</topic><topic>Communication systems</topic><topic>Ion channels</topic><topic>Iterative methods</topic><topic>Mathematical models</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cidota, Marina A.</creatorcontrib><creatorcontrib>Dumitrescu, Monica</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Ai communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cidota, Marina A.</au><au>Dumitrescu, Monica</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multinomial Hidden Markov Model and its training by a combined iterative procedure</atitle><jtitle>Ai communications</jtitle><date>2014</date><risdate>2014</risdate><volume>27</volume><issue>2</issue><spage>143</spage><epage>155</epage><pages>143-155</pages><issn>0921-7126</issn><abstract>The paper proposes a new extension of Hidden Markov Models (HMM) for communication systems by allowing the Markovian transitions between the channel's states to be influenced by some external catalyzers (e.g. environmental or experimental conditions). The stochastic influence of the catalyzers is expressed by multinomial link functions. We introduce a combined iterative training procedure, with the BaumWelch algorithm as a framework, including some nested algorithms such as the NewtonRaphson and the ExpectationMaximization (EM) algorithms. The monotony of the log-likelihood function associated with our procedure is proven. A simulation study is provided in order to prove the good performances of the proposed combined iterative training procedure. We consider that the Multinomial HMM will be an important and useful extension of HMM in bioinformatics and biostatistics, due to the possible applications in modeling the hidden ion channels whose states could be influenced by external factors.</abstract><doi>10.3233/AIC-130589</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-7126
ispartof Ai communications, 2014, Vol.27 (2), p.143-155
issn 0921-7126
language eng
recordid cdi_proquest_miscellaneous_1541423409
source EBSCOhost Business Source Complete
subjects Algorithms
Artificial intelligence
Bioinformatics
Communication systems
Ion channels
Iterative methods
Mathematical models
Training
title A Multinomial Hidden Markov Model and its training by a combined iterative procedure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A26%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multinomial%20Hidden%20Markov%20Model%20and%20its%20training%20by%20a%20combined%20iterative%20procedure&rft.jtitle=Ai%20communications&rft.au=Cidota,%20Marina%20A.&rft.date=2014&rft.volume=27&rft.issue=2&rft.spage=143&rft.epage=155&rft.pages=143-155&rft.issn=0921-7126&rft_id=info:doi/10.3233/AIC-130589&rft_dat=%3Cproquest_cross%3E1541423409%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1541423409&rft_id=info:pmid/&rfr_iscdi=true