Pre-classification based hidden Markov model for quick and accurate gesture recognition using a finger-worn device

Hidden Markov Model (HMM)-based recognition methods are very commonly used for some applications and can be highly accurate. However, they have a high computational complexity that creates problems when they are used for gesture recognition on resource-constrained wearable devices. In this paper, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied intelligence (Dordrecht, Netherlands) Netherlands), 2014-06, Vol.40 (4), p.613-622
Hauptverfasser: Zhou, Yinghui, Cheng, Zixue, Jing, Lei, Wang, Junbo, Huang, Tongjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 622
container_issue 4
container_start_page 613
container_title Applied intelligence (Dordrecht, Netherlands)
container_volume 40
creator Zhou, Yinghui
Cheng, Zixue
Jing, Lei
Wang, Junbo
Huang, Tongjun
description Hidden Markov Model (HMM)-based recognition methods are very commonly used for some applications and can be highly accurate. However, they have a high computational complexity that creates problems when they are used for gesture recognition on resource-constrained wearable devices. In this paper, we propose a pre-classification method to reduce recognition complexity by dividing gesture vocabularies into groups, and maintain, even improve, the recognition accuracy by adaptively adjusting the HMMs for different groups. The technique consists of three tasks: gesture grouping, group modeling, and gesture modeling. Gesture grouping is performed using a K-means++ algorithm; the groups are modeled using a table-based method; and the gestures are modeled using an HMM-based approach. We evaluated the pre-classification method using real data collected by a tiny finger-worn device called a Magic Ring. The complexity of our method is much less than the standard Hidden Markov Model, without any loss of accuracy.
doi_str_mv 10.1007/s10489-013-0492-y
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_miscellaneous_1541419459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3294293871</sourcerecordid><originalsourceid>FETCH-LOGICAL-p189t-23fe051c37e9bb510719ac9057de510818dedad21561915c8649c528cbfc78b3</originalsourceid><addsrcrecordid>eNpdkU1LAzEURYMoWKs_wF3AjZto3mTSmSyl-AUVXXThbsgkb2ra6aRNOpX-e9PWhbi6PDhc7uMQcg38Djgv7iPwvFSMg2A8VxnbnZAByEKwIlfFKRlwleVsNFKf5-QixjnnXAgOAxI-AjLT6hhd44zeON_RWke09MtZix1902Hht3TpLba08YGue2cWVHeWamP6oDdIZxg3fUAa0PhZ5w4lfXTdjGrapMDAvn3oqMWtM3hJzhrdRrz6zSGZPj1Oxy9s8v78On6YsBWUasMy0SCXYESBqq4l8AKUNorLwmK6SigtWm0zkCNQIE05ypWRWWnqxhRlLYbk9li7Cn7dp4XV0kWDbas79H2sQOaQg8qlSujNP3Tu-9ClcYnKeGouM5Go7EjFVTg89Yfi1d5CdbRQJQvV3kK1Ez_M1nvb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1520864823</pqid></control><display><type>article</type><title>Pre-classification based hidden Markov model for quick and accurate gesture recognition using a finger-worn device</title><source>Springer Nature - Complete Springer Journals</source><creator>Zhou, Yinghui ; Cheng, Zixue ; Jing, Lei ; Wang, Junbo ; Huang, Tongjun</creator><creatorcontrib>Zhou, Yinghui ; Cheng, Zixue ; Jing, Lei ; Wang, Junbo ; Huang, Tongjun</creatorcontrib><description>Hidden Markov Model (HMM)-based recognition methods are very commonly used for some applications and can be highly accurate. However, they have a high computational complexity that creates problems when they are used for gesture recognition on resource-constrained wearable devices. In this paper, we propose a pre-classification method to reduce recognition complexity by dividing gesture vocabularies into groups, and maintain, even improve, the recognition accuracy by adaptively adjusting the HMMs for different groups. The technique consists of three tasks: gesture grouping, group modeling, and gesture modeling. Gesture grouping is performed using a K-means++ algorithm; the groups are modeled using a table-based method; and the gestures are modeled using an HMM-based approach. We evaluated the pre-classification method using real data collected by a tiny finger-worn device called a Magic Ring. The complexity of our method is much less than the standard Hidden Markov Model, without any loss of accuracy.</description><identifier>ISSN: 0924-669X</identifier><identifier>EISSN: 1573-7497</identifier><identifier>DOI: 10.1007/s10489-013-0492-y</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Accelerometers ; Accuracy ; Artificial Intelligence ; Complexity ; Computer Science ; Design ; Devices ; Intelligence ; Machines ; Manufacturing ; Mathematical models ; Mechanical Engineering ; Personal computers ; Processes ; Recognition ; Tasks ; Voice recognition ; Wearable computers</subject><ispartof>Applied intelligence (Dordrecht, Netherlands), 2014-06, Vol.40 (4), p.613-622</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>Springer Science+Business Media New York 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p189t-23fe051c37e9bb510719ac9057de510818dedad21561915c8649c528cbfc78b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10489-013-0492-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10489-013-0492-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Zhou, Yinghui</creatorcontrib><creatorcontrib>Cheng, Zixue</creatorcontrib><creatorcontrib>Jing, Lei</creatorcontrib><creatorcontrib>Wang, Junbo</creatorcontrib><creatorcontrib>Huang, Tongjun</creatorcontrib><title>Pre-classification based hidden Markov model for quick and accurate gesture recognition using a finger-worn device</title><title>Applied intelligence (Dordrecht, Netherlands)</title><addtitle>Appl Intell</addtitle><description>Hidden Markov Model (HMM)-based recognition methods are very commonly used for some applications and can be highly accurate. However, they have a high computational complexity that creates problems when they are used for gesture recognition on resource-constrained wearable devices. In this paper, we propose a pre-classification method to reduce recognition complexity by dividing gesture vocabularies into groups, and maintain, even improve, the recognition accuracy by adaptively adjusting the HMMs for different groups. The technique consists of three tasks: gesture grouping, group modeling, and gesture modeling. Gesture grouping is performed using a K-means++ algorithm; the groups are modeled using a table-based method; and the gestures are modeled using an HMM-based approach. We evaluated the pre-classification method using real data collected by a tiny finger-worn device called a Magic Ring. The complexity of our method is much less than the standard Hidden Markov Model, without any loss of accuracy.</description><subject>Accelerometers</subject><subject>Accuracy</subject><subject>Artificial Intelligence</subject><subject>Complexity</subject><subject>Computer Science</subject><subject>Design</subject><subject>Devices</subject><subject>Intelligence</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Personal computers</subject><subject>Processes</subject><subject>Recognition</subject><subject>Tasks</subject><subject>Voice recognition</subject><subject>Wearable computers</subject><issn>0924-669X</issn><issn>1573-7497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkU1LAzEURYMoWKs_wF3AjZto3mTSmSyl-AUVXXThbsgkb2ra6aRNOpX-e9PWhbi6PDhc7uMQcg38Djgv7iPwvFSMg2A8VxnbnZAByEKwIlfFKRlwleVsNFKf5-QixjnnXAgOAxI-AjLT6hhd44zeON_RWke09MtZix1902Hht3TpLba08YGue2cWVHeWamP6oDdIZxg3fUAa0PhZ5w4lfXTdjGrapMDAvn3oqMWtM3hJzhrdRrz6zSGZPj1Oxy9s8v78On6YsBWUasMy0SCXYESBqq4l8AKUNorLwmK6SigtWm0zkCNQIE05ypWRWWnqxhRlLYbk9li7Cn7dp4XV0kWDbas79H2sQOaQg8qlSujNP3Tu-9ClcYnKeGouM5Go7EjFVTg89Yfi1d5CdbRQJQvV3kK1Ez_M1nvb</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Zhou, Yinghui</creator><creator>Cheng, Zixue</creator><creator>Jing, Lei</creator><creator>Wang, Junbo</creator><creator>Huang, Tongjun</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7TB</scope><scope>FR3</scope></search><sort><creationdate>20140601</creationdate><title>Pre-classification based hidden Markov model for quick and accurate gesture recognition using a finger-worn device</title><author>Zhou, Yinghui ; Cheng, Zixue ; Jing, Lei ; Wang, Junbo ; Huang, Tongjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p189t-23fe051c37e9bb510719ac9057de510818dedad21561915c8649c528cbfc78b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Accelerometers</topic><topic>Accuracy</topic><topic>Artificial Intelligence</topic><topic>Complexity</topic><topic>Computer Science</topic><topic>Design</topic><topic>Devices</topic><topic>Intelligence</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Personal computers</topic><topic>Processes</topic><topic>Recognition</topic><topic>Tasks</topic><topic>Voice recognition</topic><topic>Wearable computers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Yinghui</creatorcontrib><creatorcontrib>Cheng, Zixue</creatorcontrib><creatorcontrib>Jing, Lei</creatorcontrib><creatorcontrib>Wang, Junbo</creatorcontrib><creatorcontrib>Huang, Tongjun</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Yinghui</au><au>Cheng, Zixue</au><au>Jing, Lei</au><au>Wang, Junbo</au><au>Huang, Tongjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pre-classification based hidden Markov model for quick and accurate gesture recognition using a finger-worn device</atitle><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle><stitle>Appl Intell</stitle><date>2014-06-01</date><risdate>2014</risdate><volume>40</volume><issue>4</issue><spage>613</spage><epage>622</epage><pages>613-622</pages><issn>0924-669X</issn><eissn>1573-7497</eissn><abstract>Hidden Markov Model (HMM)-based recognition methods are very commonly used for some applications and can be highly accurate. However, they have a high computational complexity that creates problems when they are used for gesture recognition on resource-constrained wearable devices. In this paper, we propose a pre-classification method to reduce recognition complexity by dividing gesture vocabularies into groups, and maintain, even improve, the recognition accuracy by adaptively adjusting the HMMs for different groups. The technique consists of three tasks: gesture grouping, group modeling, and gesture modeling. Gesture grouping is performed using a K-means++ algorithm; the groups are modeled using a table-based method; and the gestures are modeled using an HMM-based approach. We evaluated the pre-classification method using real data collected by a tiny finger-worn device called a Magic Ring. The complexity of our method is much less than the standard Hidden Markov Model, without any loss of accuracy.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10489-013-0492-y</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-669X
ispartof Applied intelligence (Dordrecht, Netherlands), 2014-06, Vol.40 (4), p.613-622
issn 0924-669X
1573-7497
language eng
recordid cdi_proquest_miscellaneous_1541419459
source Springer Nature - Complete Springer Journals
subjects Accelerometers
Accuracy
Artificial Intelligence
Complexity
Computer Science
Design
Devices
Intelligence
Machines
Manufacturing
Mathematical models
Mechanical Engineering
Personal computers
Processes
Recognition
Tasks
Voice recognition
Wearable computers
title Pre-classification based hidden Markov model for quick and accurate gesture recognition using a finger-worn device
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T00%3A32%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pre-classification%20based%20hidden%20Markov%20model%20for%20quick%20and%20accurate%20gesture%20recognition%20using%20a%20finger-worn%20device&rft.jtitle=Applied%20intelligence%20(Dordrecht,%20Netherlands)&rft.au=Zhou,%20Yinghui&rft.date=2014-06-01&rft.volume=40&rft.issue=4&rft.spage=613&rft.epage=622&rft.pages=613-622&rft.issn=0924-669X&rft.eissn=1573-7497&rft_id=info:doi/10.1007/s10489-013-0492-y&rft_dat=%3Cproquest_sprin%3E3294293871%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1520864823&rft_id=info:pmid/&rfr_iscdi=true