Structural insight into glucose dehydrogenase from the thermoacidophilic archaeon Thermoplasma volcanium

Glucose dehydrogenase from the thermoacidophilic archaeon Thermoplasma volcanium (tvGlcDH) is highly active towards D‐glucose and D‐galactose, but does not utilize aldopentoses such as D‐xylose as substrates. In the present study, the crystal structures of substrate/cofactor‐free tvGlcDH and of a tv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta crystallographica. Section D, Biological crystallography. Biological crystallography., 2014-05, Vol.70 (5), p.1271-1280
Hauptverfasser: Kanoh, Yoshitaka, Uehara, Seiichiroh, Iwata, Hideyuki, Yoneda, Kazunari, Ohshima, Toshihisa, Sakuraba, Haruhiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1280
container_issue 5
container_start_page 1271
container_title Acta crystallographica. Section D, Biological crystallography.
container_volume 70
creator Kanoh, Yoshitaka
Uehara, Seiichiroh
Iwata, Hideyuki
Yoneda, Kazunari
Ohshima, Toshihisa
Sakuraba, Haruhiko
description Glucose dehydrogenase from the thermoacidophilic archaeon Thermoplasma volcanium (tvGlcDH) is highly active towards D‐glucose and D‐galactose, but does not utilize aldopentoses such as D‐xylose as substrates. In the present study, the crystal structures of substrate/cofactor‐free tvGlcDH and of a tvGlcDH T277F mutant in a binary complex with NADP and in a ternary complex with D‐glucose and nicotinic acid adenine dinucleotide phosphate, an NADP analogue, were determined at resolutions of 2.6, 2.25 and 2.33 Å, respectively. The overall structure of each monomer showed notable similarity to that of the enzyme from Sulfolobus solfataricus (ssGlcDH‐1), which accepts a broad range of C5 and C6 sugars as substrates. However, the amino‐acid residues of tvGlcDH involved in substrate binding markedly differed from those of ssGlcDH‐1. Structural comparison revealed that a decreased number of interactions between the C3‐hydroxyl group of the sugar and the enzyme are likely to be responsible for the lack of reactivity of tvGlcDH towards D‐xylose.
doi_str_mv 10.1107/S1399004714002363
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1541416941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1541416941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4502-25992302fbabaa967d68a03f01d1ca11da975ede6f21b8cee9370dea08bc8d1d3</originalsourceid><addsrcrecordid>eNqNkUFv1DAQhS1ERcvCD-CCInHpJdRjO3F8rEppEVUR6iLEyZrYzsYliRc7Afbfk7ClQnCAgzWe8feexnqEPAP6EoDKkxvgSlEqJAhKGS_5A3K0jPJl9vC3-yF5nNItnSHG5SNyyEQFJVXlEWlvxjiZcYrYZX5IftOOcx1DtukmE5LLrGt3NoaNG3Dumhj6bGzdcmIf0Hgbtq3vvMkwmhZdGLL1z6dth6nH7GvoDA5-6p-Qgwa75J7e1RX58Pp8fXaZX727eHN2epUbUVCWs0IpxilraqwRVSltWSHlDQULBgEsKlk468qGQV0Z5xSX1DqkVW0qC5avyPHedxvDl8mlUfc-Gdd1OLgwJQ2FAAGlEvAfKBMgBSsX9MUf6G2Y4jB_ZKHYvDUrxEzBnjIxpBRdo7fR9xh3GqheEtN_JTZrnt85T3Xv7L3iV0QzoPbAN9-53b8d9emnV-z9ZbF0K5LvtT6N7vu9FuNnXUouC_3x-kIX7HotJAP9lv8A5L-xBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1522259254</pqid></control><display><type>article</type><title>Structural insight into glucose dehydrogenase from the thermoacidophilic archaeon Thermoplasma volcanium</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Kanoh, Yoshitaka ; Uehara, Seiichiroh ; Iwata, Hideyuki ; Yoneda, Kazunari ; Ohshima, Toshihisa ; Sakuraba, Haruhiko</creator><creatorcontrib>Kanoh, Yoshitaka ; Uehara, Seiichiroh ; Iwata, Hideyuki ; Yoneda, Kazunari ; Ohshima, Toshihisa ; Sakuraba, Haruhiko</creatorcontrib><description>Glucose dehydrogenase from the thermoacidophilic archaeon Thermoplasma volcanium (tvGlcDH) is highly active towards D‐glucose and D‐galactose, but does not utilize aldopentoses such as D‐xylose as substrates. In the present study, the crystal structures of substrate/cofactor‐free tvGlcDH and of a tvGlcDH T277F mutant in a binary complex with NADP and in a ternary complex with D‐glucose and nicotinic acid adenine dinucleotide phosphate, an NADP analogue, were determined at resolutions of 2.6, 2.25 and 2.33 Å, respectively. The overall structure of each monomer showed notable similarity to that of the enzyme from Sulfolobus solfataricus (ssGlcDH‐1), which accepts a broad range of C5 and C6 sugars as substrates. However, the amino‐acid residues of tvGlcDH involved in substrate binding markedly differed from those of ssGlcDH‐1. Structural comparison revealed that a decreased number of interactions between the C3‐hydroxyl group of the sugar and the enzyme are likely to be responsible for the lack of reactivity of tvGlcDH towards D‐xylose.</description><identifier>ISSN: 1399-0047</identifier><identifier>ISSN: 0907-4449</identifier><identifier>EISSN: 1399-0047</identifier><identifier>DOI: 10.1107/S1399004714002363</identifier><identifier>PMID: 24816096</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>archaea ; Base Sequence ; Binding Sites ; Crystal structure ; Crystallography, X-Ray ; Enzymes ; Glucose ; Glucose - chemistry ; Glucose - metabolism ; Glucose 1-Dehydrogenase - chemistry ; Glucose 1-Dehydrogenase - genetics ; Glucose 1-Dehydrogenase - isolation &amp; purification ; Glucose 1-Dehydrogenase - metabolism ; glucose dehydrogenase ; Models, Molecular ; Molecular Sequence Data ; Monomers ; Mutation ; NADP - analogs &amp; derivatives ; NADP - chemistry ; NADP - metabolism ; Protein Conformation ; Residues ; Similarity ; Substrate Specificity ; Sugars ; Sulfolobus ; Sulfolobus solfataricus - enzymology ; thermophiles ; Thermoplasma - enzymology ; Thermoplasma volcanium</subject><ispartof>Acta crystallographica. Section D, Biological crystallography., 2014-05, Vol.70 (5), p.1271-1280</ispartof><rights>International Union of Crystallography, 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4502-25992302fbabaa967d68a03f01d1ca11da975ede6f21b8cee9370dea08bc8d1d3</citedby><cites>FETCH-LOGICAL-c4502-25992302fbabaa967d68a03f01d1ca11da975ede6f21b8cee9370dea08bc8d1d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1107%2FS1399004714002363$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1107%2FS1399004714002363$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24816096$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kanoh, Yoshitaka</creatorcontrib><creatorcontrib>Uehara, Seiichiroh</creatorcontrib><creatorcontrib>Iwata, Hideyuki</creatorcontrib><creatorcontrib>Yoneda, Kazunari</creatorcontrib><creatorcontrib>Ohshima, Toshihisa</creatorcontrib><creatorcontrib>Sakuraba, Haruhiko</creatorcontrib><title>Structural insight into glucose dehydrogenase from the thermoacidophilic archaeon Thermoplasma volcanium</title><title>Acta crystallographica. Section D, Biological crystallography.</title><addtitle>Acta Crystallographica D</addtitle><description>Glucose dehydrogenase from the thermoacidophilic archaeon Thermoplasma volcanium (tvGlcDH) is highly active towards D‐glucose and D‐galactose, but does not utilize aldopentoses such as D‐xylose as substrates. In the present study, the crystal structures of substrate/cofactor‐free tvGlcDH and of a tvGlcDH T277F mutant in a binary complex with NADP and in a ternary complex with D‐glucose and nicotinic acid adenine dinucleotide phosphate, an NADP analogue, were determined at resolutions of 2.6, 2.25 and 2.33 Å, respectively. The overall structure of each monomer showed notable similarity to that of the enzyme from Sulfolobus solfataricus (ssGlcDH‐1), which accepts a broad range of C5 and C6 sugars as substrates. However, the amino‐acid residues of tvGlcDH involved in substrate binding markedly differed from those of ssGlcDH‐1. Structural comparison revealed that a decreased number of interactions between the C3‐hydroxyl group of the sugar and the enzyme are likely to be responsible for the lack of reactivity of tvGlcDH towards D‐xylose.</description><subject>archaea</subject><subject>Base Sequence</subject><subject>Binding Sites</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Enzymes</subject><subject>Glucose</subject><subject>Glucose - chemistry</subject><subject>Glucose - metabolism</subject><subject>Glucose 1-Dehydrogenase - chemistry</subject><subject>Glucose 1-Dehydrogenase - genetics</subject><subject>Glucose 1-Dehydrogenase - isolation &amp; purification</subject><subject>Glucose 1-Dehydrogenase - metabolism</subject><subject>glucose dehydrogenase</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Monomers</subject><subject>Mutation</subject><subject>NADP - analogs &amp; derivatives</subject><subject>NADP - chemistry</subject><subject>NADP - metabolism</subject><subject>Protein Conformation</subject><subject>Residues</subject><subject>Similarity</subject><subject>Substrate Specificity</subject><subject>Sugars</subject><subject>Sulfolobus</subject><subject>Sulfolobus solfataricus - enzymology</subject><subject>thermophiles</subject><subject>Thermoplasma - enzymology</subject><subject>Thermoplasma volcanium</subject><issn>1399-0047</issn><issn>0907-4449</issn><issn>1399-0047</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUFv1DAQhS1ERcvCD-CCInHpJdRjO3F8rEppEVUR6iLEyZrYzsYliRc7Afbfk7ClQnCAgzWe8feexnqEPAP6EoDKkxvgSlEqJAhKGS_5A3K0jPJl9vC3-yF5nNItnSHG5SNyyEQFJVXlEWlvxjiZcYrYZX5IftOOcx1DtukmE5LLrGt3NoaNG3Dumhj6bGzdcmIf0Hgbtq3vvMkwmhZdGLL1z6dth6nH7GvoDA5-6p-Qgwa75J7e1RX58Pp8fXaZX727eHN2epUbUVCWs0IpxilraqwRVSltWSHlDQULBgEsKlk468qGQV0Z5xSX1DqkVW0qC5avyPHedxvDl8mlUfc-Gdd1OLgwJQ2FAAGlEvAfKBMgBSsX9MUf6G2Y4jB_ZKHYvDUrxEzBnjIxpBRdo7fR9xh3GqheEtN_JTZrnt85T3Xv7L3iV0QzoPbAN9-53b8d9emnV-z9ZbF0K5LvtT6N7vu9FuNnXUouC_3x-kIX7HotJAP9lv8A5L-xBg</recordid><startdate>201405</startdate><enddate>201405</enddate><creator>Kanoh, Yoshitaka</creator><creator>Uehara, Seiichiroh</creator><creator>Iwata, Hideyuki</creator><creator>Yoneda, Kazunari</creator><creator>Ohshima, Toshihisa</creator><creator>Sakuraba, Haruhiko</creator><general>International Union of Crystallography</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7SP</scope><scope>7SR</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>201405</creationdate><title>Structural insight into glucose dehydrogenase from the thermoacidophilic archaeon Thermoplasma volcanium</title><author>Kanoh, Yoshitaka ; Uehara, Seiichiroh ; Iwata, Hideyuki ; Yoneda, Kazunari ; Ohshima, Toshihisa ; Sakuraba, Haruhiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4502-25992302fbabaa967d68a03f01d1ca11da975ede6f21b8cee9370dea08bc8d1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>archaea</topic><topic>Base Sequence</topic><topic>Binding Sites</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Enzymes</topic><topic>Glucose</topic><topic>Glucose - chemistry</topic><topic>Glucose - metabolism</topic><topic>Glucose 1-Dehydrogenase - chemistry</topic><topic>Glucose 1-Dehydrogenase - genetics</topic><topic>Glucose 1-Dehydrogenase - isolation &amp; purification</topic><topic>Glucose 1-Dehydrogenase - metabolism</topic><topic>glucose dehydrogenase</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Monomers</topic><topic>Mutation</topic><topic>NADP - analogs &amp; derivatives</topic><topic>NADP - chemistry</topic><topic>NADP - metabolism</topic><topic>Protein Conformation</topic><topic>Residues</topic><topic>Similarity</topic><topic>Substrate Specificity</topic><topic>Sugars</topic><topic>Sulfolobus</topic><topic>Sulfolobus solfataricus - enzymology</topic><topic>thermophiles</topic><topic>Thermoplasma - enzymology</topic><topic>Thermoplasma volcanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kanoh, Yoshitaka</creatorcontrib><creatorcontrib>Uehara, Seiichiroh</creatorcontrib><creatorcontrib>Iwata, Hideyuki</creatorcontrib><creatorcontrib>Yoneda, Kazunari</creatorcontrib><creatorcontrib>Ohshima, Toshihisa</creatorcontrib><creatorcontrib>Sakuraba, Haruhiko</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Acta crystallographica. Section D, Biological crystallography.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kanoh, Yoshitaka</au><au>Uehara, Seiichiroh</au><au>Iwata, Hideyuki</au><au>Yoneda, Kazunari</au><au>Ohshima, Toshihisa</au><au>Sakuraba, Haruhiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural insight into glucose dehydrogenase from the thermoacidophilic archaeon Thermoplasma volcanium</atitle><jtitle>Acta crystallographica. Section D, Biological crystallography.</jtitle><addtitle>Acta Crystallographica D</addtitle><date>2014-05</date><risdate>2014</risdate><volume>70</volume><issue>5</issue><spage>1271</spage><epage>1280</epage><pages>1271-1280</pages><issn>1399-0047</issn><issn>0907-4449</issn><eissn>1399-0047</eissn><abstract>Glucose dehydrogenase from the thermoacidophilic archaeon Thermoplasma volcanium (tvGlcDH) is highly active towards D‐glucose and D‐galactose, but does not utilize aldopentoses such as D‐xylose as substrates. In the present study, the crystal structures of substrate/cofactor‐free tvGlcDH and of a tvGlcDH T277F mutant in a binary complex with NADP and in a ternary complex with D‐glucose and nicotinic acid adenine dinucleotide phosphate, an NADP analogue, were determined at resolutions of 2.6, 2.25 and 2.33 Å, respectively. The overall structure of each monomer showed notable similarity to that of the enzyme from Sulfolobus solfataricus (ssGlcDH‐1), which accepts a broad range of C5 and C6 sugars as substrates. However, the amino‐acid residues of tvGlcDH involved in substrate binding markedly differed from those of ssGlcDH‐1. Structural comparison revealed that a decreased number of interactions between the C3‐hydroxyl group of the sugar and the enzyme are likely to be responsible for the lack of reactivity of tvGlcDH towards D‐xylose.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><pmid>24816096</pmid><doi>10.1107/S1399004714002363</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1399-0047
ispartof Acta crystallographica. Section D, Biological crystallography., 2014-05, Vol.70 (5), p.1271-1280
issn 1399-0047
0907-4449
1399-0047
language eng
recordid cdi_proquest_miscellaneous_1541416941
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
subjects archaea
Base Sequence
Binding Sites
Crystal structure
Crystallography, X-Ray
Enzymes
Glucose
Glucose - chemistry
Glucose - metabolism
Glucose 1-Dehydrogenase - chemistry
Glucose 1-Dehydrogenase - genetics
Glucose 1-Dehydrogenase - isolation & purification
Glucose 1-Dehydrogenase - metabolism
glucose dehydrogenase
Models, Molecular
Molecular Sequence Data
Monomers
Mutation
NADP - analogs & derivatives
NADP - chemistry
NADP - metabolism
Protein Conformation
Residues
Similarity
Substrate Specificity
Sugars
Sulfolobus
Sulfolobus solfataricus - enzymology
thermophiles
Thermoplasma - enzymology
Thermoplasma volcanium
title Structural insight into glucose dehydrogenase from the thermoacidophilic archaeon Thermoplasma volcanium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T05%3A33%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20insight%20into%20glucose%20dehydrogenase%20from%20the%20thermoacidophilic%20archaeon%20Thermoplasma%20volcanium&rft.jtitle=Acta%20crystallographica.%20Section%20D,%20Biological%20crystallography.&rft.au=Kanoh,%20Yoshitaka&rft.date=2014-05&rft.volume=70&rft.issue=5&rft.spage=1271&rft.epage=1280&rft.pages=1271-1280&rft.issn=1399-0047&rft.eissn=1399-0047&rft_id=info:doi/10.1107/S1399004714002363&rft_dat=%3Cproquest_cross%3E1541416941%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1522259254&rft_id=info:pmid/24816096&rfr_iscdi=true