Robust Visual Tracking with SIFT Features and Fragments Based on Particle Swarm Optimization
We propose a novel approach for visual tracking based on a particle swarm optimization (PSO) framework using SIFT feature points correspondence and multiple fragments in a candidate target region to cope with the problems of partial occlusions, illumination changes, and large motion changes of the t...
Gespeichert in:
Veröffentlicht in: | Circuits, systems, and signal processing systems, and signal processing, 2014-05, Vol.33 (5), p.1507-1526 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1526 |
---|---|
container_issue | 5 |
container_start_page | 1507 |
container_title | Circuits, systems, and signal processing |
container_volume | 33 |
creator | Cheng, Xu Li, Nijun Zhang, Suofei Wu, Zhenyang |
description | We propose a novel approach for visual tracking based on a particle swarm optimization (PSO) framework using SIFT feature points correspondence and multiple fragments in a candidate target region to cope with the problems of partial occlusions, illumination changes, and large motion changes of the tracked target. Firstly, optimal search in the successive frame tracking process is performed by the PSO algorithm, which guides all particles towards the global optima state based on a fitness function. Then, the SIFT feature information is integrated into the iterative results of PSO to acquire a more accurate tracking state. Secondly, we present an effective appearance model updating criterion, which evaluates which fragments in appearance model need updating at each frame. However, the fragments with occluded parts or low quality measure values are not updated. The method for updating appearance model is introduced to improve the tracking performance. Compared with state-of-the-art algorithms, the proposed method can still stably track the target during the course of long-term partial occlusions using superior fragments of tracked target. The experiment results demonstrate the effectiveness of our algorithm in complex environments where the target object undergoes partial occlusions and large changes in pose and illumination. |
doi_str_mv | 10.1007/s00034-013-9713-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1541412232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3290271731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-a1ca04da21f936c64d9c9bebfcead9efb2d6f10ec4d7d28775b5b464a5931fb3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF3AjZvR3CTzyFLFakFQbBEXQriTydToPGqSQfTXO1IXIri5Z_Odw-Uj5BDYCTCWnwbGmJAJA5GofDywRSaQCkjSIi-2yYTxvEhYAY-7ZC-EF8ZAScUn5Om-L4cQ6YMLAzZ06dG8um5F3118pov5bElnFuPgbaDYVXTmcdXaLgZ6jsFWtO_oHfroTGPp4h19S2_X0bXuE6Pru32yU2MT7MFPTslydrm8uE5ubq_mF2c3iRFSxQTBIJMVcqiVyEwmK2VUacvaWKyUrUteZTUwa2SVV7zI87RMS5lJTJWAuhRTcryZXfv-bbAh6tYFY5sGO9sPQUMqQQLngo_o0R_0pR98Nz43UpwxJaTIRgo2lPF9CN7Weu1di_5DA9PfuvVGtx5162_dGsYO33TCyHYr638t_1v6AoNVguA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1520093436</pqid></control><display><type>article</type><title>Robust Visual Tracking with SIFT Features and Fragments Based on Particle Swarm Optimization</title><source>SpringerNature Complete Journals</source><creator>Cheng, Xu ; Li, Nijun ; Zhang, Suofei ; Wu, Zhenyang</creator><creatorcontrib>Cheng, Xu ; Li, Nijun ; Zhang, Suofei ; Wu, Zhenyang</creatorcontrib><description>We propose a novel approach for visual tracking based on a particle swarm optimization (PSO) framework using SIFT feature points correspondence and multiple fragments in a candidate target region to cope with the problems of partial occlusions, illumination changes, and large motion changes of the tracked target. Firstly, optimal search in the successive frame tracking process is performed by the PSO algorithm, which guides all particles towards the global optima state based on a fitness function. Then, the SIFT feature information is integrated into the iterative results of PSO to acquire a more accurate tracking state. Secondly, we present an effective appearance model updating criterion, which evaluates which fragments in appearance model need updating at each frame. However, the fragments with occluded parts or low quality measure values are not updated. The method for updating appearance model is introduced to improve the tracking performance. Compared with state-of-the-art algorithms, the proposed method can still stably track the target during the course of long-term partial occlusions using superior fragments of tracked target. The experiment results demonstrate the effectiveness of our algorithm in complex environments where the target object undergoes partial occlusions and large changes in pose and illumination.</description><identifier>ISSN: 0278-081X</identifier><identifier>EISSN: 1531-5878</identifier><identifier>DOI: 10.1007/s00034-013-9713-1</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithms ; Circuits and Systems ; Electrical Engineering ; Electronics and Microelectronics ; Engineering ; Fragments ; Illumination ; Instrumentation ; Occlusion ; Optimization ; Signal,Image and Speech Processing ; Stochastic control theory ; Swarm intelligence ; Target tracking ; Tracking ; Vision systems ; Visual</subject><ispartof>Circuits, systems, and signal processing, 2014-05, Vol.33 (5), p.1507-1526</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>Springer Science+Business Media New York 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-a1ca04da21f936c64d9c9bebfcead9efb2d6f10ec4d7d28775b5b464a5931fb3</citedby><cites>FETCH-LOGICAL-c349t-a1ca04da21f936c64d9c9bebfcead9efb2d6f10ec4d7d28775b5b464a5931fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00034-013-9713-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00034-013-9713-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Cheng, Xu</creatorcontrib><creatorcontrib>Li, Nijun</creatorcontrib><creatorcontrib>Zhang, Suofei</creatorcontrib><creatorcontrib>Wu, Zhenyang</creatorcontrib><title>Robust Visual Tracking with SIFT Features and Fragments Based on Particle Swarm Optimization</title><title>Circuits, systems, and signal processing</title><addtitle>Circuits Syst Signal Process</addtitle><description>We propose a novel approach for visual tracking based on a particle swarm optimization (PSO) framework using SIFT feature points correspondence and multiple fragments in a candidate target region to cope with the problems of partial occlusions, illumination changes, and large motion changes of the tracked target. Firstly, optimal search in the successive frame tracking process is performed by the PSO algorithm, which guides all particles towards the global optima state based on a fitness function. Then, the SIFT feature information is integrated into the iterative results of PSO to acquire a more accurate tracking state. Secondly, we present an effective appearance model updating criterion, which evaluates which fragments in appearance model need updating at each frame. However, the fragments with occluded parts or low quality measure values are not updated. The method for updating appearance model is introduced to improve the tracking performance. Compared with state-of-the-art algorithms, the proposed method can still stably track the target during the course of long-term partial occlusions using superior fragments of tracked target. The experiment results demonstrate the effectiveness of our algorithm in complex environments where the target object undergoes partial occlusions and large changes in pose and illumination.</description><subject>Algorithms</subject><subject>Circuits and Systems</subject><subject>Electrical Engineering</subject><subject>Electronics and Microelectronics</subject><subject>Engineering</subject><subject>Fragments</subject><subject>Illumination</subject><subject>Instrumentation</subject><subject>Occlusion</subject><subject>Optimization</subject><subject>Signal,Image and Speech Processing</subject><subject>Stochastic control theory</subject><subject>Swarm intelligence</subject><subject>Target tracking</subject><subject>Tracking</subject><subject>Vision systems</subject><subject>Visual</subject><issn>0278-081X</issn><issn>1531-5878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLAzEUhYMoWKs_wF3AjZvR3CTzyFLFakFQbBEXQriTydToPGqSQfTXO1IXIri5Z_Odw-Uj5BDYCTCWnwbGmJAJA5GofDywRSaQCkjSIi-2yYTxvEhYAY-7ZC-EF8ZAScUn5Om-L4cQ6YMLAzZ06dG8um5F3118pov5bElnFuPgbaDYVXTmcdXaLgZ6jsFWtO_oHfroTGPp4h19S2_X0bXuE6Pru32yU2MT7MFPTslydrm8uE5ubq_mF2c3iRFSxQTBIJMVcqiVyEwmK2VUacvaWKyUrUteZTUwa2SVV7zI87RMS5lJTJWAuhRTcryZXfv-bbAh6tYFY5sGO9sPQUMqQQLngo_o0R_0pR98Nz43UpwxJaTIRgo2lPF9CN7Weu1di_5DA9PfuvVGtx5162_dGsYO33TCyHYr638t_1v6AoNVguA</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Cheng, Xu</creator><creator>Li, Nijun</creator><creator>Zhang, Suofei</creator><creator>Wu, Zhenyang</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20140501</creationdate><title>Robust Visual Tracking with SIFT Features and Fragments Based on Particle Swarm Optimization</title><author>Cheng, Xu ; Li, Nijun ; Zhang, Suofei ; Wu, Zhenyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-a1ca04da21f936c64d9c9bebfcead9efb2d6f10ec4d7d28775b5b464a5931fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Circuits and Systems</topic><topic>Electrical Engineering</topic><topic>Electronics and Microelectronics</topic><topic>Engineering</topic><topic>Fragments</topic><topic>Illumination</topic><topic>Instrumentation</topic><topic>Occlusion</topic><topic>Optimization</topic><topic>Signal,Image and Speech Processing</topic><topic>Stochastic control theory</topic><topic>Swarm intelligence</topic><topic>Target tracking</topic><topic>Tracking</topic><topic>Vision systems</topic><topic>Visual</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Xu</creatorcontrib><creatorcontrib>Li, Nijun</creatorcontrib><creatorcontrib>Zhang, Suofei</creatorcontrib><creatorcontrib>Wu, Zhenyang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Circuits, systems, and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Xu</au><au>Li, Nijun</au><au>Zhang, Suofei</au><au>Wu, Zhenyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Visual Tracking with SIFT Features and Fragments Based on Particle Swarm Optimization</atitle><jtitle>Circuits, systems, and signal processing</jtitle><stitle>Circuits Syst Signal Process</stitle><date>2014-05-01</date><risdate>2014</risdate><volume>33</volume><issue>5</issue><spage>1507</spage><epage>1526</epage><pages>1507-1526</pages><issn>0278-081X</issn><eissn>1531-5878</eissn><abstract>We propose a novel approach for visual tracking based on a particle swarm optimization (PSO) framework using SIFT feature points correspondence and multiple fragments in a candidate target region to cope with the problems of partial occlusions, illumination changes, and large motion changes of the tracked target. Firstly, optimal search in the successive frame tracking process is performed by the PSO algorithm, which guides all particles towards the global optima state based on a fitness function. Then, the SIFT feature information is integrated into the iterative results of PSO to acquire a more accurate tracking state. Secondly, we present an effective appearance model updating criterion, which evaluates which fragments in appearance model need updating at each frame. However, the fragments with occluded parts or low quality measure values are not updated. The method for updating appearance model is introduced to improve the tracking performance. Compared with state-of-the-art algorithms, the proposed method can still stably track the target during the course of long-term partial occlusions using superior fragments of tracked target. The experiment results demonstrate the effectiveness of our algorithm in complex environments where the target object undergoes partial occlusions and large changes in pose and illumination.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s00034-013-9713-1</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-081X |
ispartof | Circuits, systems, and signal processing, 2014-05, Vol.33 (5), p.1507-1526 |
issn | 0278-081X 1531-5878 |
language | eng |
recordid | cdi_proquest_miscellaneous_1541412232 |
source | SpringerNature Complete Journals |
subjects | Algorithms Circuits and Systems Electrical Engineering Electronics and Microelectronics Engineering Fragments Illumination Instrumentation Occlusion Optimization Signal,Image and Speech Processing Stochastic control theory Swarm intelligence Target tracking Tracking Vision systems Visual |
title | Robust Visual Tracking with SIFT Features and Fragments Based on Particle Swarm Optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A46%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Visual%20Tracking%20with%20SIFT%20Features%20and%20Fragments%20Based%20on%20Particle%20Swarm%20Optimization&rft.jtitle=Circuits,%20systems,%20and%20signal%20processing&rft.au=Cheng,%20Xu&rft.date=2014-05-01&rft.volume=33&rft.issue=5&rft.spage=1507&rft.epage=1526&rft.pages=1507-1526&rft.issn=0278-081X&rft.eissn=1531-5878&rft_id=info:doi/10.1007/s00034-013-9713-1&rft_dat=%3Cproquest_cross%3E3290271731%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1520093436&rft_id=info:pmid/&rfr_iscdi=true |