Robust Visual Tracking with SIFT Features and Fragments Based on Particle Swarm Optimization

We propose a novel approach for visual tracking based on a particle swarm optimization (PSO) framework using SIFT feature points correspondence and multiple fragments in a candidate target region to cope with the problems of partial occlusions, illumination changes, and large motion changes of the t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circuits, systems, and signal processing systems, and signal processing, 2014-05, Vol.33 (5), p.1507-1526
Hauptverfasser: Cheng, Xu, Li, Nijun, Zhang, Suofei, Wu, Zhenyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1526
container_issue 5
container_start_page 1507
container_title Circuits, systems, and signal processing
container_volume 33
creator Cheng, Xu
Li, Nijun
Zhang, Suofei
Wu, Zhenyang
description We propose a novel approach for visual tracking based on a particle swarm optimization (PSO) framework using SIFT feature points correspondence and multiple fragments in a candidate target region to cope with the problems of partial occlusions, illumination changes, and large motion changes of the tracked target. Firstly, optimal search in the successive frame tracking process is performed by the PSO algorithm, which guides all particles towards the global optima state based on a fitness function. Then, the SIFT feature information is integrated into the iterative results of PSO to acquire a more accurate tracking state. Secondly, we present an effective appearance model updating criterion, which evaluates which fragments in appearance model need updating at each frame. However, the fragments with occluded parts or low quality measure values are not updated. The method for updating appearance model is introduced to improve the tracking performance. Compared with state-of-the-art algorithms, the proposed method can still stably track the target during the course of long-term partial occlusions using superior fragments of tracked target. The experiment results demonstrate the effectiveness of our algorithm in complex environments where the target object undergoes partial occlusions and large changes in pose and illumination.
doi_str_mv 10.1007/s00034-013-9713-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1541412232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3290271731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-a1ca04da21f936c64d9c9bebfcead9efb2d6f10ec4d7d28775b5b464a5931fb3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF3AjZvR3CTzyFLFakFQbBEXQriTydToPGqSQfTXO1IXIri5Z_Odw-Uj5BDYCTCWnwbGmJAJA5GofDywRSaQCkjSIi-2yYTxvEhYAY-7ZC-EF8ZAScUn5Om-L4cQ6YMLAzZ06dG8um5F3118pov5bElnFuPgbaDYVXTmcdXaLgZ6jsFWtO_oHfroTGPp4h19S2_X0bXuE6Pru32yU2MT7MFPTslydrm8uE5ubq_mF2c3iRFSxQTBIJMVcqiVyEwmK2VUacvaWKyUrUteZTUwa2SVV7zI87RMS5lJTJWAuhRTcryZXfv-bbAh6tYFY5sGO9sPQUMqQQLngo_o0R_0pR98Nz43UpwxJaTIRgo2lPF9CN7Weu1di_5DA9PfuvVGtx5162_dGsYO33TCyHYr638t_1v6AoNVguA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1520093436</pqid></control><display><type>article</type><title>Robust Visual Tracking with SIFT Features and Fragments Based on Particle Swarm Optimization</title><source>SpringerNature Complete Journals</source><creator>Cheng, Xu ; Li, Nijun ; Zhang, Suofei ; Wu, Zhenyang</creator><creatorcontrib>Cheng, Xu ; Li, Nijun ; Zhang, Suofei ; Wu, Zhenyang</creatorcontrib><description>We propose a novel approach for visual tracking based on a particle swarm optimization (PSO) framework using SIFT feature points correspondence and multiple fragments in a candidate target region to cope with the problems of partial occlusions, illumination changes, and large motion changes of the tracked target. Firstly, optimal search in the successive frame tracking process is performed by the PSO algorithm, which guides all particles towards the global optima state based on a fitness function. Then, the SIFT feature information is integrated into the iterative results of PSO to acquire a more accurate tracking state. Secondly, we present an effective appearance model updating criterion, which evaluates which fragments in appearance model need updating at each frame. However, the fragments with occluded parts or low quality measure values are not updated. The method for updating appearance model is introduced to improve the tracking performance. Compared with state-of-the-art algorithms, the proposed method can still stably track the target during the course of long-term partial occlusions using superior fragments of tracked target. The experiment results demonstrate the effectiveness of our algorithm in complex environments where the target object undergoes partial occlusions and large changes in pose and illumination.</description><identifier>ISSN: 0278-081X</identifier><identifier>EISSN: 1531-5878</identifier><identifier>DOI: 10.1007/s00034-013-9713-1</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithms ; Circuits and Systems ; Electrical Engineering ; Electronics and Microelectronics ; Engineering ; Fragments ; Illumination ; Instrumentation ; Occlusion ; Optimization ; Signal,Image and Speech Processing ; Stochastic control theory ; Swarm intelligence ; Target tracking ; Tracking ; Vision systems ; Visual</subject><ispartof>Circuits, systems, and signal processing, 2014-05, Vol.33 (5), p.1507-1526</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>Springer Science+Business Media New York 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-a1ca04da21f936c64d9c9bebfcead9efb2d6f10ec4d7d28775b5b464a5931fb3</citedby><cites>FETCH-LOGICAL-c349t-a1ca04da21f936c64d9c9bebfcead9efb2d6f10ec4d7d28775b5b464a5931fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00034-013-9713-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00034-013-9713-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Cheng, Xu</creatorcontrib><creatorcontrib>Li, Nijun</creatorcontrib><creatorcontrib>Zhang, Suofei</creatorcontrib><creatorcontrib>Wu, Zhenyang</creatorcontrib><title>Robust Visual Tracking with SIFT Features and Fragments Based on Particle Swarm Optimization</title><title>Circuits, systems, and signal processing</title><addtitle>Circuits Syst Signal Process</addtitle><description>We propose a novel approach for visual tracking based on a particle swarm optimization (PSO) framework using SIFT feature points correspondence and multiple fragments in a candidate target region to cope with the problems of partial occlusions, illumination changes, and large motion changes of the tracked target. Firstly, optimal search in the successive frame tracking process is performed by the PSO algorithm, which guides all particles towards the global optima state based on a fitness function. Then, the SIFT feature information is integrated into the iterative results of PSO to acquire a more accurate tracking state. Secondly, we present an effective appearance model updating criterion, which evaluates which fragments in appearance model need updating at each frame. However, the fragments with occluded parts or low quality measure values are not updated. The method for updating appearance model is introduced to improve the tracking performance. Compared with state-of-the-art algorithms, the proposed method can still stably track the target during the course of long-term partial occlusions using superior fragments of tracked target. The experiment results demonstrate the effectiveness of our algorithm in complex environments where the target object undergoes partial occlusions and large changes in pose and illumination.</description><subject>Algorithms</subject><subject>Circuits and Systems</subject><subject>Electrical Engineering</subject><subject>Electronics and Microelectronics</subject><subject>Engineering</subject><subject>Fragments</subject><subject>Illumination</subject><subject>Instrumentation</subject><subject>Occlusion</subject><subject>Optimization</subject><subject>Signal,Image and Speech Processing</subject><subject>Stochastic control theory</subject><subject>Swarm intelligence</subject><subject>Target tracking</subject><subject>Tracking</subject><subject>Vision systems</subject><subject>Visual</subject><issn>0278-081X</issn><issn>1531-5878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLAzEUhYMoWKs_wF3AjZvR3CTzyFLFakFQbBEXQriTydToPGqSQfTXO1IXIri5Z_Odw-Uj5BDYCTCWnwbGmJAJA5GofDywRSaQCkjSIi-2yYTxvEhYAY-7ZC-EF8ZAScUn5Om-L4cQ6YMLAzZ06dG8um5F3118pov5bElnFuPgbaDYVXTmcdXaLgZ6jsFWtO_oHfroTGPp4h19S2_X0bXuE6Pru32yU2MT7MFPTslydrm8uE5ubq_mF2c3iRFSxQTBIJMVcqiVyEwmK2VUacvaWKyUrUteZTUwa2SVV7zI87RMS5lJTJWAuhRTcryZXfv-bbAh6tYFY5sGO9sPQUMqQQLngo_o0R_0pR98Nz43UpwxJaTIRgo2lPF9CN7Weu1di_5DA9PfuvVGtx5162_dGsYO33TCyHYr638t_1v6AoNVguA</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Cheng, Xu</creator><creator>Li, Nijun</creator><creator>Zhang, Suofei</creator><creator>Wu, Zhenyang</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20140501</creationdate><title>Robust Visual Tracking with SIFT Features and Fragments Based on Particle Swarm Optimization</title><author>Cheng, Xu ; Li, Nijun ; Zhang, Suofei ; Wu, Zhenyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-a1ca04da21f936c64d9c9bebfcead9efb2d6f10ec4d7d28775b5b464a5931fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Circuits and Systems</topic><topic>Electrical Engineering</topic><topic>Electronics and Microelectronics</topic><topic>Engineering</topic><topic>Fragments</topic><topic>Illumination</topic><topic>Instrumentation</topic><topic>Occlusion</topic><topic>Optimization</topic><topic>Signal,Image and Speech Processing</topic><topic>Stochastic control theory</topic><topic>Swarm intelligence</topic><topic>Target tracking</topic><topic>Tracking</topic><topic>Vision systems</topic><topic>Visual</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Xu</creatorcontrib><creatorcontrib>Li, Nijun</creatorcontrib><creatorcontrib>Zhang, Suofei</creatorcontrib><creatorcontrib>Wu, Zhenyang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Circuits, systems, and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Xu</au><au>Li, Nijun</au><au>Zhang, Suofei</au><au>Wu, Zhenyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Visual Tracking with SIFT Features and Fragments Based on Particle Swarm Optimization</atitle><jtitle>Circuits, systems, and signal processing</jtitle><stitle>Circuits Syst Signal Process</stitle><date>2014-05-01</date><risdate>2014</risdate><volume>33</volume><issue>5</issue><spage>1507</spage><epage>1526</epage><pages>1507-1526</pages><issn>0278-081X</issn><eissn>1531-5878</eissn><abstract>We propose a novel approach for visual tracking based on a particle swarm optimization (PSO) framework using SIFT feature points correspondence and multiple fragments in a candidate target region to cope with the problems of partial occlusions, illumination changes, and large motion changes of the tracked target. Firstly, optimal search in the successive frame tracking process is performed by the PSO algorithm, which guides all particles towards the global optima state based on a fitness function. Then, the SIFT feature information is integrated into the iterative results of PSO to acquire a more accurate tracking state. Secondly, we present an effective appearance model updating criterion, which evaluates which fragments in appearance model need updating at each frame. However, the fragments with occluded parts or low quality measure values are not updated. The method for updating appearance model is introduced to improve the tracking performance. Compared with state-of-the-art algorithms, the proposed method can still stably track the target during the course of long-term partial occlusions using superior fragments of tracked target. The experiment results demonstrate the effectiveness of our algorithm in complex environments where the target object undergoes partial occlusions and large changes in pose and illumination.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s00034-013-9713-1</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0278-081X
ispartof Circuits, systems, and signal processing, 2014-05, Vol.33 (5), p.1507-1526
issn 0278-081X
1531-5878
language eng
recordid cdi_proquest_miscellaneous_1541412232
source SpringerNature Complete Journals
subjects Algorithms
Circuits and Systems
Electrical Engineering
Electronics and Microelectronics
Engineering
Fragments
Illumination
Instrumentation
Occlusion
Optimization
Signal,Image and Speech Processing
Stochastic control theory
Swarm intelligence
Target tracking
Tracking
Vision systems
Visual
title Robust Visual Tracking with SIFT Features and Fragments Based on Particle Swarm Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A46%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Visual%20Tracking%20with%20SIFT%20Features%20and%20Fragments%20Based%20on%20Particle%20Swarm%20Optimization&rft.jtitle=Circuits,%20systems,%20and%20signal%20processing&rft.au=Cheng,%20Xu&rft.date=2014-05-01&rft.volume=33&rft.issue=5&rft.spage=1507&rft.epage=1526&rft.pages=1507-1526&rft.issn=0278-081X&rft.eissn=1531-5878&rft_id=info:doi/10.1007/s00034-013-9713-1&rft_dat=%3Cproquest_cross%3E3290271731%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1520093436&rft_id=info:pmid/&rfr_iscdi=true