A Proposal of Spatio-Temporal Reconstruction Method Based on a Fast Block-Iterative Algorithm
Parametric images can help investigate disease mechanisms and vital functions. To estimate parametric images, it is necessary to obtain the tissue time activity curves (tTACs), which express temporal changes of tracer activity in human tissue. In general, the tTACs are calculated from each voxel...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Information and Systems 2013/04/01, Vol.E96.D(4), pp.819-825 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 825 |
---|---|
container_issue | 4 |
container_start_page | 819 |
container_title | IEICE Transactions on Information and Systems |
container_volume | E96.D |
creator | KON, Tatsuya OBI, Takashi TASHIMA, Hideaki OHYAMA, Nagaaki |
description | Parametric images can help investigate disease mechanisms and vital functions. To estimate parametric images, it is necessary to obtain the tissue time activity curves (tTACs), which express temporal changes of tracer activity in human tissue. In general, the tTACs are calculated from each voxel's value of the time sequential PET images estimated from dynamic PET data. Recently, spatio-temporal PET reconstruction methods have been proposed in order to take into account the temporal correlation within each tTAC. Such spatio-temporal algorithms are generally quite computationally intensive. On the other hand, typical algorithms such as the preconditioned conjugate gradient (PCG) method still does not provide good accuracy in estimation. To overcome these problems, we propose a new spatio-temporal reconstruction method based on the dynamic row-action maximum-likelihood algorithm (DRAMA). As the original algorithm does, the proposed method takes into account the noise propagation, but it achieves much faster convergence. Performance of the method is evaluated with digital phantom simulations and it is shown that the proposed method requires only a few reconstruction processes, thereby remarkably reducing the computational cost required to estimate the tTACs. The results also show that the tTACs and parametric images from the proposed method have better accuracy. |
doi_str_mv | 10.1587/transinf.E96.D.819 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1541410532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1541410532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c600t-aae2274aabc18143f242607be0f92befc6ec2adb5288408b5d9fe9240e5ea8b63</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWKt_wFOOXrYm2ew2e2yrtYWKovUoYTadbVe3mzVJBf-9kfoBnoZ5eZ-BeQg552zAMzW8DA5aX7fV4LrIB1cDxYsD0uNDmSU8zfkh6bGC54nKUnFMTrx_YYwrwbMeeR7Re2c766GhtqKPHYTaJkvcdtbF6AGNbX1wOxPjlt5i2NgVHYPHFY070Cn4QMeNNa_JPKCL9DvSUbO2rg6b7Sk5qqDxePY9--Rper2czJLF3c18MlokJmcsJAAoxFAClIYrLtNKSJGzYYmsKkSJlcnRCFiVmVBKMlVmq6LCQkiGGYIq87RPLvZ3O2ffduiD3tbeYNNAi3bnNc8kl5zF92NV7KvGWe8dVrpz9Rbch-ZMf7nUPy51dKmvdHQZodkeevEB1viLgAu1afA_Iv_Q34rZgNPYpp9YlIXS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1541410532</pqid></control><display><type>article</type><title>A Proposal of Spatio-Temporal Reconstruction Method Based on a Fast Block-Iterative Algorithm</title><source>J-STAGE Free</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>KON, Tatsuya ; OBI, Takashi ; TASHIMA, Hideaki ; OHYAMA, Nagaaki</creator><creatorcontrib>KON, Tatsuya ; OBI, Takashi ; TASHIMA, Hideaki ; OHYAMA, Nagaaki</creatorcontrib><description>Parametric images can help investigate disease mechanisms and vital functions. To estimate parametric images, it is necessary to obtain the tissue time activity curves (tTACs), which express temporal changes of tracer activity in human tissue. In general, the tTACs are calculated from each voxel's value of the time sequential PET images estimated from dynamic PET data. Recently, spatio-temporal PET reconstruction methods have been proposed in order to take into account the temporal correlation within each tTAC. Such spatio-temporal algorithms are generally quite computationally intensive. On the other hand, typical algorithms such as the preconditioned conjugate gradient (PCG) method still does not provide good accuracy in estimation. To overcome these problems, we propose a new spatio-temporal reconstruction method based on the dynamic row-action maximum-likelihood algorithm (DRAMA). As the original algorithm does, the proposed method takes into account the noise propagation, but it achieves much faster convergence. Performance of the method is evaluated with digital phantom simulations and it is shown that the proposed method requires only a few reconstruction processes, thereby remarkably reducing the computational cost required to estimate the tTACs. The results also show that the tTACs and parametric images from the proposed method have better accuracy.</description><identifier>ISSN: 0916-8532</identifier><identifier>EISSN: 1745-1361</identifier><identifier>DOI: 10.1587/transinf.E96.D.819</identifier><language>eng</language><publisher>The Institute of Electronics, Information and Communication Engineers</publisher><subject>Accuracy ; Algorithms ; DRAMA ; Dynamics ; Estimates ; Mathematical analysis ; parametric image ; PET ; Positron emission ; Reconstruction ; spatio-temporal reconstruction</subject><ispartof>IEICE Transactions on Information and Systems, 2013/04/01, Vol.E96.D(4), pp.819-825</ispartof><rights>2013 The Institute of Electronics, Information and Communication Engineers</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c600t-aae2274aabc18143f242607be0f92befc6ec2adb5288408b5d9fe9240e5ea8b63</citedby><cites>FETCH-LOGICAL-c600t-aae2274aabc18143f242607be0f92befc6ec2adb5288408b5d9fe9240e5ea8b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1877,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>KON, Tatsuya</creatorcontrib><creatorcontrib>OBI, Takashi</creatorcontrib><creatorcontrib>TASHIMA, Hideaki</creatorcontrib><creatorcontrib>OHYAMA, Nagaaki</creatorcontrib><title>A Proposal of Spatio-Temporal Reconstruction Method Based on a Fast Block-Iterative Algorithm</title><title>IEICE Transactions on Information and Systems</title><addtitle>IEICE Trans. Inf. & Syst.</addtitle><description>Parametric images can help investigate disease mechanisms and vital functions. To estimate parametric images, it is necessary to obtain the tissue time activity curves (tTACs), which express temporal changes of tracer activity in human tissue. In general, the tTACs are calculated from each voxel's value of the time sequential PET images estimated from dynamic PET data. Recently, spatio-temporal PET reconstruction methods have been proposed in order to take into account the temporal correlation within each tTAC. Such spatio-temporal algorithms are generally quite computationally intensive. On the other hand, typical algorithms such as the preconditioned conjugate gradient (PCG) method still does not provide good accuracy in estimation. To overcome these problems, we propose a new spatio-temporal reconstruction method based on the dynamic row-action maximum-likelihood algorithm (DRAMA). As the original algorithm does, the proposed method takes into account the noise propagation, but it achieves much faster convergence. Performance of the method is evaluated with digital phantom simulations and it is shown that the proposed method requires only a few reconstruction processes, thereby remarkably reducing the computational cost required to estimate the tTACs. The results also show that the tTACs and parametric images from the proposed method have better accuracy.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>DRAMA</subject><subject>Dynamics</subject><subject>Estimates</subject><subject>Mathematical analysis</subject><subject>parametric image</subject><subject>PET</subject><subject>Positron emission</subject><subject>Reconstruction</subject><subject>spatio-temporal reconstruction</subject><issn>0916-8532</issn><issn>1745-1361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhoMoWKt_wFOOXrYm2ew2e2yrtYWKovUoYTadbVe3mzVJBf-9kfoBnoZ5eZ-BeQg552zAMzW8DA5aX7fV4LrIB1cDxYsD0uNDmSU8zfkh6bGC54nKUnFMTrx_YYwrwbMeeR7Re2c766GhtqKPHYTaJkvcdtbF6AGNbX1wOxPjlt5i2NgVHYPHFY070Cn4QMeNNa_JPKCL9DvSUbO2rg6b7Sk5qqDxePY9--Rper2czJLF3c18MlokJmcsJAAoxFAClIYrLtNKSJGzYYmsKkSJlcnRCFiVmVBKMlVmq6LCQkiGGYIq87RPLvZ3O2ffduiD3tbeYNNAi3bnNc8kl5zF92NV7KvGWe8dVrpz9Rbch-ZMf7nUPy51dKmvdHQZodkeevEB1viLgAu1afA_Iv_Q34rZgNPYpp9YlIXS</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>KON, Tatsuya</creator><creator>OBI, Takashi</creator><creator>TASHIMA, Hideaki</creator><creator>OHYAMA, Nagaaki</creator><general>The Institute of Electronics, Information and Communication Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2013</creationdate><title>A Proposal of Spatio-Temporal Reconstruction Method Based on a Fast Block-Iterative Algorithm</title><author>KON, Tatsuya ; OBI, Takashi ; TASHIMA, Hideaki ; OHYAMA, Nagaaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c600t-aae2274aabc18143f242607be0f92befc6ec2adb5288408b5d9fe9240e5ea8b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>DRAMA</topic><topic>Dynamics</topic><topic>Estimates</topic><topic>Mathematical analysis</topic><topic>parametric image</topic><topic>PET</topic><topic>Positron emission</topic><topic>Reconstruction</topic><topic>spatio-temporal reconstruction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KON, Tatsuya</creatorcontrib><creatorcontrib>OBI, Takashi</creatorcontrib><creatorcontrib>TASHIMA, Hideaki</creatorcontrib><creatorcontrib>OHYAMA, Nagaaki</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE Transactions on Information and Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KON, Tatsuya</au><au>OBI, Takashi</au><au>TASHIMA, Hideaki</au><au>OHYAMA, Nagaaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Proposal of Spatio-Temporal Reconstruction Method Based on a Fast Block-Iterative Algorithm</atitle><jtitle>IEICE Transactions on Information and Systems</jtitle><addtitle>IEICE Trans. Inf. & Syst.</addtitle><date>2013</date><risdate>2013</risdate><volume>E96.D</volume><issue>4</issue><spage>819</spage><epage>825</epage><pages>819-825</pages><issn>0916-8532</issn><eissn>1745-1361</eissn><abstract>Parametric images can help investigate disease mechanisms and vital functions. To estimate parametric images, it is necessary to obtain the tissue time activity curves (tTACs), which express temporal changes of tracer activity in human tissue. In general, the tTACs are calculated from each voxel's value of the time sequential PET images estimated from dynamic PET data. Recently, spatio-temporal PET reconstruction methods have been proposed in order to take into account the temporal correlation within each tTAC. Such spatio-temporal algorithms are generally quite computationally intensive. On the other hand, typical algorithms such as the preconditioned conjugate gradient (PCG) method still does not provide good accuracy in estimation. To overcome these problems, we propose a new spatio-temporal reconstruction method based on the dynamic row-action maximum-likelihood algorithm (DRAMA). As the original algorithm does, the proposed method takes into account the noise propagation, but it achieves much faster convergence. Performance of the method is evaluated with digital phantom simulations and it is shown that the proposed method requires only a few reconstruction processes, thereby remarkably reducing the computational cost required to estimate the tTACs. The results also show that the tTACs and parametric images from the proposed method have better accuracy.</abstract><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transinf.E96.D.819</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0916-8532 |
ispartof | IEICE Transactions on Information and Systems, 2013/04/01, Vol.E96.D(4), pp.819-825 |
issn | 0916-8532 1745-1361 |
language | eng |
recordid | cdi_proquest_miscellaneous_1541410532 |
source | J-STAGE Free; EZB-FREE-00999 freely available EZB journals |
subjects | Accuracy Algorithms DRAMA Dynamics Estimates Mathematical analysis parametric image PET Positron emission Reconstruction spatio-temporal reconstruction |
title | A Proposal of Spatio-Temporal Reconstruction Method Based on a Fast Block-Iterative Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A27%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Proposal%20of%20Spatio-Temporal%20Reconstruction%20Method%20Based%20on%20a%20Fast%20Block-Iterative%20Algorithm&rft.jtitle=IEICE%20Transactions%20on%20Information%20and%20Systems&rft.au=KON,%20Tatsuya&rft.date=2013&rft.volume=E96.D&rft.issue=4&rft.spage=819&rft.epage=825&rft.pages=819-825&rft.issn=0916-8532&rft.eissn=1745-1361&rft_id=info:doi/10.1587/transinf.E96.D.819&rft_dat=%3Cproquest_cross%3E1541410532%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1541410532&rft_id=info:pmid/&rfr_iscdi=true |