An experimental study of the influence of graphite on the electrical conductivity of olivine aggregates

Presence of graphite is one of the mechanisms to explain enhanced electrical conductivity. Because the conductivity of graphite is highly anisotropic and the connectivity of graphite depends strongly on the geometry of the crystals, the key issue is the geometry of graphite in a rock including their...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2013-05, Vol.40 (10), p.2028-2032
Hauptverfasser: Wang, Duojun, Karato, Shun-ichiro, Jiang, Zhenting
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2032
container_issue 10
container_start_page 2028
container_title Geophysical research letters
container_volume 40
creator Wang, Duojun
Karato, Shun-ichiro
Jiang, Zhenting
description Presence of graphite is one of the mechanisms to explain enhanced electrical conductivity. Because the conductivity of graphite is highly anisotropic and the connectivity of graphite depends strongly on the geometry of the crystals, the key issue is the geometry of graphite in a rock including their crystallographic orientation and the shape of graphite crystals. We explored the role of graphite on electrical conductivity in olivine‐rich aggregates. To obtain well‐defined results, we conducted an experimental study at high pressure and temperature conditions. Olivine aggregates containing diamonds were annealed to transform diamond to graphite with nearly equilibrium morphology. Graphite formed by the transformation from diamond has thin disk‐shape morphology, the plane being the highly conductive (0001) plane. When the concentration of graphite exceeds the percolation threshold (~ 1 wt%), electrical conductivity is significantly enhanced. Some of the observed high conductivity regions may represent regions of high concentration of graphite. Key Points Graphite formed from diamond at high P,T has thin disk‐shape morphologyFor graphite to enhance conductivity depends on volume fraction and geometryHigher carbon content may explain the observed high conductivity in some regions
doi_str_mv 10.1002/grl.50471
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1541403278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3545474251</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5201-bd36a846817e6d2b92d40ba441a391dc7d346f509e68fc6bfec01761f69a7ef63</originalsourceid><addsrcrecordid>eNp9kUFrFDEYhoMouNYe_AcDXvQw7ZdJJpkcS7G7wqLQagUvIZv5Mp2aZtYko91_b7qrHgR7yku-5_kIeQl5ReGEAjSnQ_QnLXBJn5AFVZzXHYB8ShYAquRGiufkRUq3AMCA0QUZzkKF91uM4x2GbHyV8tzvqslV-QarMTg_Y7D4cDFEs70Zc8lhP0SPNsfRFslOoZ9tHn-Mee9OvsSAlRmGiIPJmF6SZ874hMe_zyPy-eLdp_NVvf64fH9-tq5N2wCtNz0TpuOioxJF32xU03PYGM6pYYr2VvaMC9eCQtE5KzYOLVApqBPKSHSCHZE3h73bOH2fMWV9NyaL3puA05w0bTnlwBrZFfT1P-jtNMdQXqepoiBFxxU8SgneQCOgbQr19kDZOKUU0elt-VETd5qCfihGl2L0vpjCnh7Yn6PH3f9Bvbxc_zHqgzGmjPd_DRO_aSGZbPWXD0u9ulzyK3X9Va_YL8SUniw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642026052</pqid></control><display><type>article</type><title>An experimental study of the influence of graphite on the electrical conductivity of olivine aggregates</title><source>Wiley Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><creator>Wang, Duojun ; Karato, Shun-ichiro ; Jiang, Zhenting</creator><creatorcontrib>Wang, Duojun ; Karato, Shun-ichiro ; Jiang, Zhenting</creatorcontrib><description>Presence of graphite is one of the mechanisms to explain enhanced electrical conductivity. Because the conductivity of graphite is highly anisotropic and the connectivity of graphite depends strongly on the geometry of the crystals, the key issue is the geometry of graphite in a rock including their crystallographic orientation and the shape of graphite crystals. We explored the role of graphite on electrical conductivity in olivine‐rich aggregates. To obtain well‐defined results, we conducted an experimental study at high pressure and temperature conditions. Olivine aggregates containing diamonds were annealed to transform diamond to graphite with nearly equilibrium morphology. Graphite formed by the transformation from diamond has thin disk‐shape morphology, the plane being the highly conductive (0001) plane. When the concentration of graphite exceeds the percolation threshold (~ 1 wt%), electrical conductivity is significantly enhanced. Some of the observed high conductivity regions may represent regions of high concentration of graphite. Key Points Graphite formed from diamond at high P,T has thin disk‐shape morphologyFor graphite to enhance conductivity depends on volume fraction and geometryHigher carbon content may explain the observed high conductivity in some regions</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/grl.50471</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Aggregates ; Anisotropy ; Annealing ; Conductivity ; Crystallography ; Crystals ; Diamonds ; Electrical conductivity ; Electrical resistivity ; Genetic transformation ; Geometry ; Graphite ; High pressure ; Mathematical morphology ; Morphology ; Olivine ; Orientation ; Percolation ; percolation threshold ; Pressure ; Regions ; Resistivity ; Rocks ; Shape ; Temperature ; Temperature effects</subject><ispartof>Geophysical research letters, 2013-05, Vol.40 (10), p.2028-2032</ispartof><rights>2013. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5201-bd36a846817e6d2b92d40ba441a391dc7d346f509e68fc6bfec01761f69a7ef63</citedby><cites>FETCH-LOGICAL-a5201-bd36a846817e6d2b92d40ba441a391dc7d346f509e68fc6bfec01761f69a7ef63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fgrl.50471$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fgrl.50471$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids></links><search><creatorcontrib>Wang, Duojun</creatorcontrib><creatorcontrib>Karato, Shun-ichiro</creatorcontrib><creatorcontrib>Jiang, Zhenting</creatorcontrib><title>An experimental study of the influence of graphite on the electrical conductivity of olivine aggregates</title><title>Geophysical research letters</title><addtitle>Geophys. Res. Lett</addtitle><description>Presence of graphite is one of the mechanisms to explain enhanced electrical conductivity. Because the conductivity of graphite is highly anisotropic and the connectivity of graphite depends strongly on the geometry of the crystals, the key issue is the geometry of graphite in a rock including their crystallographic orientation and the shape of graphite crystals. We explored the role of graphite on electrical conductivity in olivine‐rich aggregates. To obtain well‐defined results, we conducted an experimental study at high pressure and temperature conditions. Olivine aggregates containing diamonds were annealed to transform diamond to graphite with nearly equilibrium morphology. Graphite formed by the transformation from diamond has thin disk‐shape morphology, the plane being the highly conductive (0001) plane. When the concentration of graphite exceeds the percolation threshold (~ 1 wt%), electrical conductivity is significantly enhanced. Some of the observed high conductivity regions may represent regions of high concentration of graphite. Key Points Graphite formed from diamond at high P,T has thin disk‐shape morphologyFor graphite to enhance conductivity depends on volume fraction and geometryHigher carbon content may explain the observed high conductivity in some regions</description><subject>Aggregates</subject><subject>Anisotropy</subject><subject>Annealing</subject><subject>Conductivity</subject><subject>Crystallography</subject><subject>Crystals</subject><subject>Diamonds</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Genetic transformation</subject><subject>Geometry</subject><subject>Graphite</subject><subject>High pressure</subject><subject>Mathematical morphology</subject><subject>Morphology</subject><subject>Olivine</subject><subject>Orientation</subject><subject>Percolation</subject><subject>percolation threshold</subject><subject>Pressure</subject><subject>Regions</subject><subject>Resistivity</subject><subject>Rocks</subject><subject>Shape</subject><subject>Temperature</subject><subject>Temperature effects</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kUFrFDEYhoMouNYe_AcDXvQw7ZdJJpkcS7G7wqLQagUvIZv5Mp2aZtYko91_b7qrHgR7yku-5_kIeQl5ReGEAjSnQ_QnLXBJn5AFVZzXHYB8ShYAquRGiufkRUq3AMCA0QUZzkKF91uM4x2GbHyV8tzvqslV-QarMTg_Y7D4cDFEs70Zc8lhP0SPNsfRFslOoZ9tHn-Mee9OvsSAlRmGiIPJmF6SZ874hMe_zyPy-eLdp_NVvf64fH9-tq5N2wCtNz0TpuOioxJF32xU03PYGM6pYYr2VvaMC9eCQtE5KzYOLVApqBPKSHSCHZE3h73bOH2fMWV9NyaL3puA05w0bTnlwBrZFfT1P-jtNMdQXqepoiBFxxU8SgneQCOgbQr19kDZOKUU0elt-VETd5qCfihGl2L0vpjCnh7Yn6PH3f9Bvbxc_zHqgzGmjPd_DRO_aSGZbPWXD0u9ulzyK3X9Va_YL8SUniw</recordid><startdate>20130528</startdate><enddate>20130528</enddate><creator>Wang, Duojun</creator><creator>Karato, Shun-ichiro</creator><creator>Jiang, Zhenting</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7SR</scope><scope>JG9</scope></search><sort><creationdate>20130528</creationdate><title>An experimental study of the influence of graphite on the electrical conductivity of olivine aggregates</title><author>Wang, Duojun ; Karato, Shun-ichiro ; Jiang, Zhenting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5201-bd36a846817e6d2b92d40ba441a391dc7d346f509e68fc6bfec01761f69a7ef63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aggregates</topic><topic>Anisotropy</topic><topic>Annealing</topic><topic>Conductivity</topic><topic>Crystallography</topic><topic>Crystals</topic><topic>Diamonds</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Genetic transformation</topic><topic>Geometry</topic><topic>Graphite</topic><topic>High pressure</topic><topic>Mathematical morphology</topic><topic>Morphology</topic><topic>Olivine</topic><topic>Orientation</topic><topic>Percolation</topic><topic>percolation threshold</topic><topic>Pressure</topic><topic>Regions</topic><topic>Resistivity</topic><topic>Rocks</topic><topic>Shape</topic><topic>Temperature</topic><topic>Temperature effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Duojun</creatorcontrib><creatorcontrib>Karato, Shun-ichiro</creatorcontrib><creatorcontrib>Jiang, Zhenting</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Research Database</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Duojun</au><au>Karato, Shun-ichiro</au><au>Jiang, Zhenting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An experimental study of the influence of graphite on the electrical conductivity of olivine aggregates</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys. Res. Lett</addtitle><date>2013-05-28</date><risdate>2013</risdate><volume>40</volume><issue>10</issue><spage>2028</spage><epage>2032</epage><pages>2028-2032</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Presence of graphite is one of the mechanisms to explain enhanced electrical conductivity. Because the conductivity of graphite is highly anisotropic and the connectivity of graphite depends strongly on the geometry of the crystals, the key issue is the geometry of graphite in a rock including their crystallographic orientation and the shape of graphite crystals. We explored the role of graphite on electrical conductivity in olivine‐rich aggregates. To obtain well‐defined results, we conducted an experimental study at high pressure and temperature conditions. Olivine aggregates containing diamonds were annealed to transform diamond to graphite with nearly equilibrium morphology. Graphite formed by the transformation from diamond has thin disk‐shape morphology, the plane being the highly conductive (0001) plane. When the concentration of graphite exceeds the percolation threshold (~ 1 wt%), electrical conductivity is significantly enhanced. Some of the observed high conductivity regions may represent regions of high concentration of graphite. Key Points Graphite formed from diamond at high P,T has thin disk‐shape morphologyFor graphite to enhance conductivity depends on volume fraction and geometryHigher carbon content may explain the observed high conductivity in some regions</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/grl.50471</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2013-05, Vol.40 (10), p.2028-2032
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_miscellaneous_1541403278
source Wiley Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; Wiley-Blackwell AGU Digital Library
subjects Aggregates
Anisotropy
Annealing
Conductivity
Crystallography
Crystals
Diamonds
Electrical conductivity
Electrical resistivity
Genetic transformation
Geometry
Graphite
High pressure
Mathematical morphology
Morphology
Olivine
Orientation
Percolation
percolation threshold
Pressure
Regions
Resistivity
Rocks
Shape
Temperature
Temperature effects
title An experimental study of the influence of graphite on the electrical conductivity of olivine aggregates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A15%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20experimental%20study%20of%20the%20influence%20of%20graphite%20on%20the%20electrical%20conductivity%20of%20olivine%20aggregates&rft.jtitle=Geophysical%20research%20letters&rft.au=Wang,%20Duojun&rft.date=2013-05-28&rft.volume=40&rft.issue=10&rft.spage=2028&rft.epage=2032&rft.pages=2028-2032&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1002/grl.50471&rft_dat=%3Cproquest_cross%3E3545474251%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1642026052&rft_id=info:pmid/&rfr_iscdi=true