Accurate Time Series Classification Using Shapelets
Time series data are sequences of values measured over time. One of the most recent approaches to classification of time series data is to find shapelets within a data set. Time series shapelets are time series subsequences which represent a class. In order to compare two time series sequences, an e...
Gespeichert in:
Veröffentlicht in: | International journal of data mining & knowledge management process 2014-03, Vol.4 (2), p.39-47 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 47 |
---|---|
container_issue | 2 |
container_start_page | 39 |
container_title | International journal of data mining & knowledge management process |
container_volume | 4 |
creator | M, Arathi A, Govardhan |
description | Time series data are sequences of values measured over time. One of the most recent approaches to classification of time series data is to find shapelets within a data set. Time series shapelets are time series subsequences which represent a class. In order to compare two time series sequences, an existing work uses Euclidean distance measure. The problem with Euclidean distance is that it requires data to be standardized if scales differ. In this paper, the authors perform the classification of time series data using time series shapelets and used Mahalanobis distance measure. The Mahalanobis distance is a descriptive statistic that provides a relative measure of a data point's distance (residual) from a common point. The Mahalanobis distance is used to identify and gauge similarity of an unknown sample set to a known one. It differs from Euclidean distance in that it takes into account the correlations of the data set and is scale-invariant. They show that Mahalanobis distance results in more accuracy than Euclidean distance measure. |
doi_str_mv | 10.5121/ijdkp.2014.4204 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1541399362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1541399362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1192-a682e64b317f528ab78e25c9db385239672164034c5436b244f6b2a94272ef903</originalsourceid><addsrcrecordid>eNotkDtPwzAUhS0EElXpzJqRJanv9SPxWFW8pEoMbSU2y3FvwJA2wU4H_j1py3LOGT6d4WPsHnihAGEevnbffYEcZCGRyys2QRQ8N5pX1-cNOefl-y2bpRRqjloZrUBMmFh4f4xuoGwT9pStKQZK2bJ1I9cE74bQHbJtCoePbP3pemppSHfspnFtotl_T9n26XGzfMlXb8-vy8Uq9wAGc6crJC1rAWWjsHJ1WREqb3a1qBQKo0sELbmQXkmha5SyGdMZiSVSY7iYsofLbx-7nyOlwe5D8tS27kDdMVlQEoQxQuOIzi-oj11KkRrbx7B38dcCtydD9mzIngzZkyHxB5NxV7M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1541399362</pqid></control><display><type>article</type><title>Accurate Time Series Classification Using Shapelets</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>M, Arathi ; A, Govardhan</creator><creatorcontrib>M, Arathi ; A, Govardhan</creatorcontrib><description>Time series data are sequences of values measured over time. One of the most recent approaches to classification of time series data is to find shapelets within a data set. Time series shapelets are time series subsequences which represent a class. In order to compare two time series sequences, an existing work uses Euclidean distance measure. The problem with Euclidean distance is that it requires data to be standardized if scales differ. In this paper, the authors perform the classification of time series data using time series shapelets and used Mahalanobis distance measure. The Mahalanobis distance is a descriptive statistic that provides a relative measure of a data point's distance (residual) from a common point. The Mahalanobis distance is used to identify and gauge similarity of an unknown sample set to a known one. It differs from Euclidean distance in that it takes into account the correlations of the data set and is scale-invariant. They show that Mahalanobis distance results in more accuracy than Euclidean distance measure.</description><identifier>ISSN: 2231-007X</identifier><identifier>EISSN: 2230-9608</identifier><identifier>DOI: 10.5121/ijdkp.2014.4204</identifier><language>eng</language><subject>Classification ; Correlation ; Knowledge management ; Samples ; Sequences ; Similarity ; Statistics ; Time series</subject><ispartof>International journal of data mining & knowledge management process, 2014-03, Vol.4 (2), p.39-47</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1192-a682e64b317f528ab78e25c9db385239672164034c5436b244f6b2a94272ef903</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>M, Arathi</creatorcontrib><creatorcontrib>A, Govardhan</creatorcontrib><title>Accurate Time Series Classification Using Shapelets</title><title>International journal of data mining & knowledge management process</title><description>Time series data are sequences of values measured over time. One of the most recent approaches to classification of time series data is to find shapelets within a data set. Time series shapelets are time series subsequences which represent a class. In order to compare two time series sequences, an existing work uses Euclidean distance measure. The problem with Euclidean distance is that it requires data to be standardized if scales differ. In this paper, the authors perform the classification of time series data using time series shapelets and used Mahalanobis distance measure. The Mahalanobis distance is a descriptive statistic that provides a relative measure of a data point's distance (residual) from a common point. The Mahalanobis distance is used to identify and gauge similarity of an unknown sample set to a known one. It differs from Euclidean distance in that it takes into account the correlations of the data set and is scale-invariant. They show that Mahalanobis distance results in more accuracy than Euclidean distance measure.</description><subject>Classification</subject><subject>Correlation</subject><subject>Knowledge management</subject><subject>Samples</subject><subject>Sequences</subject><subject>Similarity</subject><subject>Statistics</subject><subject>Time series</subject><issn>2231-007X</issn><issn>2230-9608</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNotkDtPwzAUhS0EElXpzJqRJanv9SPxWFW8pEoMbSU2y3FvwJA2wU4H_j1py3LOGT6d4WPsHnihAGEevnbffYEcZCGRyys2QRQ8N5pX1-cNOefl-y2bpRRqjloZrUBMmFh4f4xuoGwT9pStKQZK2bJ1I9cE74bQHbJtCoePbP3pemppSHfspnFtotl_T9n26XGzfMlXb8-vy8Uq9wAGc6crJC1rAWWjsHJ1WREqb3a1qBQKo0sELbmQXkmha5SyGdMZiSVSY7iYsofLbx-7nyOlwe5D8tS27kDdMVlQEoQxQuOIzi-oj11KkRrbx7B38dcCtydD9mzIngzZkyHxB5NxV7M</recordid><startdate>20140331</startdate><enddate>20140331</enddate><creator>M, Arathi</creator><creator>A, Govardhan</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140331</creationdate><title>Accurate Time Series Classification Using Shapelets</title><author>M, Arathi ; A, Govardhan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1192-a682e64b317f528ab78e25c9db385239672164034c5436b244f6b2a94272ef903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Classification</topic><topic>Correlation</topic><topic>Knowledge management</topic><topic>Samples</topic><topic>Sequences</topic><topic>Similarity</topic><topic>Statistics</topic><topic>Time series</topic><toplevel>online_resources</toplevel><creatorcontrib>M, Arathi</creatorcontrib><creatorcontrib>A, Govardhan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of data mining & knowledge management process</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>M, Arathi</au><au>A, Govardhan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate Time Series Classification Using Shapelets</atitle><jtitle>International journal of data mining & knowledge management process</jtitle><date>2014-03-31</date><risdate>2014</risdate><volume>4</volume><issue>2</issue><spage>39</spage><epage>47</epage><pages>39-47</pages><issn>2231-007X</issn><eissn>2230-9608</eissn><abstract>Time series data are sequences of values measured over time. One of the most recent approaches to classification of time series data is to find shapelets within a data set. Time series shapelets are time series subsequences which represent a class. In order to compare two time series sequences, an existing work uses Euclidean distance measure. The problem with Euclidean distance is that it requires data to be standardized if scales differ. In this paper, the authors perform the classification of time series data using time series shapelets and used Mahalanobis distance measure. The Mahalanobis distance is a descriptive statistic that provides a relative measure of a data point's distance (residual) from a common point. The Mahalanobis distance is used to identify and gauge similarity of an unknown sample set to a known one. It differs from Euclidean distance in that it takes into account the correlations of the data set and is scale-invariant. They show that Mahalanobis distance results in more accuracy than Euclidean distance measure.</abstract><doi>10.5121/ijdkp.2014.4204</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2231-007X |
ispartof | International journal of data mining & knowledge management process, 2014-03, Vol.4 (2), p.39-47 |
issn | 2231-007X 2230-9608 |
language | eng |
recordid | cdi_proquest_miscellaneous_1541399362 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Classification Correlation Knowledge management Samples Sequences Similarity Statistics Time series |
title | Accurate Time Series Classification Using Shapelets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A27%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20Time%20Series%20Classification%20Using%20Shapelets&rft.jtitle=International%20journal%20of%20data%20mining%20&%20knowledge%20management%20process&rft.au=M,%20Arathi&rft.date=2014-03-31&rft.volume=4&rft.issue=2&rft.spage=39&rft.epage=47&rft.pages=39-47&rft.issn=2231-007X&rft.eissn=2230-9608&rft_id=info:doi/10.5121/ijdkp.2014.4204&rft_dat=%3Cproquest_cross%3E1541399362%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1541399362&rft_id=info:pmid/&rfr_iscdi=true |