DNA double-strand breaks promote methylation of histone H3 on lysine 9 and transient formation of repressive chromatin

Dynamic changes in histone modification are critical for regulating DNA double-strand break (DSB) repair. Activation of the Tip60 acetyltransferase by DSBs requires interaction of Tip60 with histone H3 methylated on lysine 9 (H3K9me3). However, how H3K9 methylation is regulated during DSB repair is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2014-06, Vol.111 (25), p.9169-9174
Hauptverfasser: Ayrapetov, Marina K., Gursoy-Yuzugullu, Ozge, Xu, Chang, Xu, Ye, Price, Brendan D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9174
container_issue 25
container_start_page 9169
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 111
creator Ayrapetov, Marina K.
Gursoy-Yuzugullu, Ozge
Xu, Chang
Xu, Ye
Price, Brendan D.
description Dynamic changes in histone modification are critical for regulating DNA double-strand break (DSB) repair. Activation of the Tip60 acetyltransferase by DSBs requires interaction of Tip60 with histone H3 methylated on lysine 9 (H3K9me3). However, how H3K9 methylation is regulated during DSB repair is not known. Here, we demonstrate that a complex containing kap-1, HP1, and the H3K9 methyltransferase suv39h1 is rapidly loaded onto the chromatin at DSBs. Suv39h1 methylates H3K9, facilitating loading of additional kap-1/HP1/suv39h1 through binding of HP1’s chromodomain to the nascent H3K9me3. This process initiates cycles of kap-1/HP1/suv39h1 loading and H3K9 methylation that facilitate spreading of H3K9me3 and kap-1/HP1/suv39h1 complexes for tens of kilobases away from the DSB. These domains of H3K9me3 function to activate the Tip60 acetyltransferase, allowing Tip60 to acetylate both ataxia telangiectasia-mutated (ATM) kinase and histone H4. Consequently, cells lacking suv39h1 display defective activation of Tip60 and ATM, decreased DSB repair, and increased radiosensitivity. Importantly, activated ATM rapidly phosphorylates kap-1, leading to release of the repressive kap-1/HP1/suv39h1 complex from the chromatin. ATM activation therefore functions as a negative feedback loop to remove repressive suv39h1 complexes at DSBs, which may limit DSB repair. Recruitment of kap-1/HP1/suv39h1 to DSBs therefore provides a mechanism for transiently increasing the levels of H3K9me3 in open chromatin domains that lack H3K9me3 and thereby promoting efficient activation of Tip60 and ATM in these regions. Further, transient formation of repressive chromatin may be critical for stabilizing the damaged chromatin and for remodeling the chromatin to create an efficient template for the DNA repair machinery.
doi_str_mv 10.1073/pnas.1403565111
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1540710788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23802499</jstor_id><sourcerecordid>23802499</sourcerecordid><originalsourceid>FETCH-LOGICAL-c623t-37107f131c6c115c7d40c283ef5c489b2d91b17570ff322e36fd4a418c2735f83</originalsourceid><addsrcrecordid>eNqNkktv1DAUhSMEokNhzQqwxIZN2nv9SJwNUlUeRapgAV1bjmN3MiRxsJOR5t_jaIYZYAMry_Z3zn3oZNlzhAuEkl2Og44XyIGJQiDig2yFUGFe8AoeZisAWuaSU36WPYlxAwCVkPA4O6O8oqXgdJVt332-Io2f687mcQp6aEgdrP4eyRh87ydLejutd52eWj8Q78i6jZMfLLlhJD10u9imS0UW4SKPrR0m4nzoj4pgx2BjbLeWmHUyTR_D0-yR0120zw7neXb34f2365v89svHT9dXt7kpKJtyVqYpHTI0hUEUpmw4GCqZdcJwWdW0qbDGUpTgHKPUssI1XHOUhpZMOMnOs7d733Gue9uY1FzQnRpD2-uwU1636s-foV2re79VHEopgSWDNweD4H_MNk6qb6OxXacH6-eoUKa6Im2z-g8UGKbNC_pvVKT6uLSQ0Nd_oRs_hyEtbaGYkCyNm6jLPWWCjzFYdxwRQS1JUUtS1CkpSfHy980c-V_RSMCrA7Aoj3aIigpVYbEM_GJPbFIkwsmBSUgu1cnBaa_0fWijuvtKAQsA5FwwyX4CV1vWpA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1543583418</pqid></control><display><type>article</type><title>DNA double-strand breaks promote methylation of histone H3 on lysine 9 and transient formation of repressive chromatin</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ayrapetov, Marina K. ; Gursoy-Yuzugullu, Ozge ; Xu, Chang ; Xu, Ye ; Price, Brendan D.</creator><creatorcontrib>Ayrapetov, Marina K. ; Gursoy-Yuzugullu, Ozge ; Xu, Chang ; Xu, Ye ; Price, Brendan D.</creatorcontrib><description>Dynamic changes in histone modification are critical for regulating DNA double-strand break (DSB) repair. Activation of the Tip60 acetyltransferase by DSBs requires interaction of Tip60 with histone H3 methylated on lysine 9 (H3K9me3). However, how H3K9 methylation is regulated during DSB repair is not known. Here, we demonstrate that a complex containing kap-1, HP1, and the H3K9 methyltransferase suv39h1 is rapidly loaded onto the chromatin at DSBs. Suv39h1 methylates H3K9, facilitating loading of additional kap-1/HP1/suv39h1 through binding of HP1’s chromodomain to the nascent H3K9me3. This process initiates cycles of kap-1/HP1/suv39h1 loading and H3K9 methylation that facilitate spreading of H3K9me3 and kap-1/HP1/suv39h1 complexes for tens of kilobases away from the DSB. These domains of H3K9me3 function to activate the Tip60 acetyltransferase, allowing Tip60 to acetylate both ataxia telangiectasia-mutated (ATM) kinase and histone H4. Consequently, cells lacking suv39h1 display defective activation of Tip60 and ATM, decreased DSB repair, and increased radiosensitivity. Importantly, activated ATM rapidly phosphorylates kap-1, leading to release of the repressive kap-1/HP1/suv39h1 complex from the chromatin. ATM activation therefore functions as a negative feedback loop to remove repressive suv39h1 complexes at DSBs, which may limit DSB repair. Recruitment of kap-1/HP1/suv39h1 to DSBs therefore provides a mechanism for transiently increasing the levels of H3K9me3 in open chromatin domains that lack H3K9me3 and thereby promoting efficient activation of Tip60 and ATM in these regions. Further, transient formation of repressive chromatin may be critical for stabilizing the damaged chromatin and for remodeling the chromatin to create an efficient template for the DNA repair machinery.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1403565111</identifier><identifier>PMID: 24927542</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Antibodies ; ataxia (disorder) ; Ataxia Telangiectasia Mutated Proteins - genetics ; Ataxia Telangiectasia Mutated Proteins - metabolism ; Biological Sciences ; Chromatin ; Chromatin - genetics ; Chromatin - metabolism ; Chromatin Assembly and Disassembly ; Deoxyribonucleic acid ; DNA ; DNA Breaks, Double-Stranded ; DNA damage ; DNA methylation ; DNA repair ; equipment maintenance and repair ; Gene expression regulation ; HEK293 Cells ; HeLa Cells ; Heterochromatin ; Histone Acetyltransferases - genetics ; Histone Acetyltransferases - metabolism ; Histones ; Histones - genetics ; Histones - metabolism ; Humans ; Kinases ; Lasers ; lysine ; Lysine - genetics ; Lysine - metabolism ; Lysine Acetyltransferase 5 ; Methylation ; methyltransferases ; Methyltransferases - genetics ; Methyltransferases - metabolism ; Phosphorylation ; Protein Structure, Tertiary ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; Tripartite Motif-Containing Protein 28</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2014-06, Vol.111 (25), p.9169-9174</ispartof><rights>copyright © 1993—2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jun 24, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c623t-37107f131c6c115c7d40c283ef5c489b2d91b17570ff322e36fd4a418c2735f83</citedby><cites>FETCH-LOGICAL-c623t-37107f131c6c115c7d40c283ef5c489b2d91b17570ff322e36fd4a418c2735f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/111/25.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23802499$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23802499$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24927542$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ayrapetov, Marina K.</creatorcontrib><creatorcontrib>Gursoy-Yuzugullu, Ozge</creatorcontrib><creatorcontrib>Xu, Chang</creatorcontrib><creatorcontrib>Xu, Ye</creatorcontrib><creatorcontrib>Price, Brendan D.</creatorcontrib><title>DNA double-strand breaks promote methylation of histone H3 on lysine 9 and transient formation of repressive chromatin</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Dynamic changes in histone modification are critical for regulating DNA double-strand break (DSB) repair. Activation of the Tip60 acetyltransferase by DSBs requires interaction of Tip60 with histone H3 methylated on lysine 9 (H3K9me3). However, how H3K9 methylation is regulated during DSB repair is not known. Here, we demonstrate that a complex containing kap-1, HP1, and the H3K9 methyltransferase suv39h1 is rapidly loaded onto the chromatin at DSBs. Suv39h1 methylates H3K9, facilitating loading of additional kap-1/HP1/suv39h1 through binding of HP1’s chromodomain to the nascent H3K9me3. This process initiates cycles of kap-1/HP1/suv39h1 loading and H3K9 methylation that facilitate spreading of H3K9me3 and kap-1/HP1/suv39h1 complexes for tens of kilobases away from the DSB. These domains of H3K9me3 function to activate the Tip60 acetyltransferase, allowing Tip60 to acetylate both ataxia telangiectasia-mutated (ATM) kinase and histone H4. Consequently, cells lacking suv39h1 display defective activation of Tip60 and ATM, decreased DSB repair, and increased radiosensitivity. Importantly, activated ATM rapidly phosphorylates kap-1, leading to release of the repressive kap-1/HP1/suv39h1 complex from the chromatin. ATM activation therefore functions as a negative feedback loop to remove repressive suv39h1 complexes at DSBs, which may limit DSB repair. Recruitment of kap-1/HP1/suv39h1 to DSBs therefore provides a mechanism for transiently increasing the levels of H3K9me3 in open chromatin domains that lack H3K9me3 and thereby promoting efficient activation of Tip60 and ATM in these regions. Further, transient formation of repressive chromatin may be critical for stabilizing the damaged chromatin and for remodeling the chromatin to create an efficient template for the DNA repair machinery.</description><subject>Antibodies</subject><subject>ataxia (disorder)</subject><subject>Ataxia Telangiectasia Mutated Proteins - genetics</subject><subject>Ataxia Telangiectasia Mutated Proteins - metabolism</subject><subject>Biological Sciences</subject><subject>Chromatin</subject><subject>Chromatin - genetics</subject><subject>Chromatin - metabolism</subject><subject>Chromatin Assembly and Disassembly</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA damage</subject><subject>DNA methylation</subject><subject>DNA repair</subject><subject>equipment maintenance and repair</subject><subject>Gene expression regulation</subject><subject>HEK293 Cells</subject><subject>HeLa Cells</subject><subject>Heterochromatin</subject><subject>Histone Acetyltransferases - genetics</subject><subject>Histone Acetyltransferases - metabolism</subject><subject>Histones</subject><subject>Histones - genetics</subject><subject>Histones - metabolism</subject><subject>Humans</subject><subject>Kinases</subject><subject>Lasers</subject><subject>lysine</subject><subject>Lysine - genetics</subject><subject>Lysine - metabolism</subject><subject>Lysine Acetyltransferase 5</subject><subject>Methylation</subject><subject>methyltransferases</subject><subject>Methyltransferases - genetics</subject><subject>Methyltransferases - metabolism</subject><subject>Phosphorylation</subject><subject>Protein Structure, Tertiary</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>Tripartite Motif-Containing Protein 28</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkktv1DAUhSMEokNhzQqwxIZN2nv9SJwNUlUeRapgAV1bjmN3MiRxsJOR5t_jaIYZYAMry_Z3zn3oZNlzhAuEkl2Og44XyIGJQiDig2yFUGFe8AoeZisAWuaSU36WPYlxAwCVkPA4O6O8oqXgdJVt332-Io2f687mcQp6aEgdrP4eyRh87ydLejutd52eWj8Q78i6jZMfLLlhJD10u9imS0UW4SKPrR0m4nzoj4pgx2BjbLeWmHUyTR_D0-yR0120zw7neXb34f2365v89svHT9dXt7kpKJtyVqYpHTI0hUEUpmw4GCqZdcJwWdW0qbDGUpTgHKPUssI1XHOUhpZMOMnOs7d733Gue9uY1FzQnRpD2-uwU1636s-foV2re79VHEopgSWDNweD4H_MNk6qb6OxXacH6-eoUKa6Im2z-g8UGKbNC_pvVKT6uLSQ0Nd_oRs_hyEtbaGYkCyNm6jLPWWCjzFYdxwRQS1JUUtS1CkpSfHy980c-V_RSMCrA7Aoj3aIigpVYbEM_GJPbFIkwsmBSUgu1cnBaa_0fWijuvtKAQsA5FwwyX4CV1vWpA</recordid><startdate>20140624</startdate><enddate>20140624</enddate><creator>Ayrapetov, Marina K.</creator><creator>Gursoy-Yuzugullu, Ozge</creator><creator>Xu, Chang</creator><creator>Xu, Ye</creator><creator>Price, Brendan D.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>7QO</scope><scope>7ST</scope><scope>SOI</scope><scope>5PM</scope></search><sort><creationdate>20140624</creationdate><title>DNA double-strand breaks promote methylation of histone H3 on lysine 9 and transient formation of repressive chromatin</title><author>Ayrapetov, Marina K. ; Gursoy-Yuzugullu, Ozge ; Xu, Chang ; Xu, Ye ; Price, Brendan D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c623t-37107f131c6c115c7d40c283ef5c489b2d91b17570ff322e36fd4a418c2735f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Antibodies</topic><topic>ataxia (disorder)</topic><topic>Ataxia Telangiectasia Mutated Proteins - genetics</topic><topic>Ataxia Telangiectasia Mutated Proteins - metabolism</topic><topic>Biological Sciences</topic><topic>Chromatin</topic><topic>Chromatin - genetics</topic><topic>Chromatin - metabolism</topic><topic>Chromatin Assembly and Disassembly</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA damage</topic><topic>DNA methylation</topic><topic>DNA repair</topic><topic>equipment maintenance and repair</topic><topic>Gene expression regulation</topic><topic>HEK293 Cells</topic><topic>HeLa Cells</topic><topic>Heterochromatin</topic><topic>Histone Acetyltransferases - genetics</topic><topic>Histone Acetyltransferases - metabolism</topic><topic>Histones</topic><topic>Histones - genetics</topic><topic>Histones - metabolism</topic><topic>Humans</topic><topic>Kinases</topic><topic>Lasers</topic><topic>lysine</topic><topic>Lysine - genetics</topic><topic>Lysine - metabolism</topic><topic>Lysine Acetyltransferase 5</topic><topic>Methylation</topic><topic>methyltransferases</topic><topic>Methyltransferases - genetics</topic><topic>Methyltransferases - metabolism</topic><topic>Phosphorylation</topic><topic>Protein Structure, Tertiary</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>Tripartite Motif-Containing Protein 28</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ayrapetov, Marina K.</creatorcontrib><creatorcontrib>Gursoy-Yuzugullu, Ozge</creatorcontrib><creatorcontrib>Xu, Chang</creatorcontrib><creatorcontrib>Xu, Ye</creatorcontrib><creatorcontrib>Price, Brendan D.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ayrapetov, Marina K.</au><au>Gursoy-Yuzugullu, Ozge</au><au>Xu, Chang</au><au>Xu, Ye</au><au>Price, Brendan D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DNA double-strand breaks promote methylation of histone H3 on lysine 9 and transient formation of repressive chromatin</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2014-06-24</date><risdate>2014</risdate><volume>111</volume><issue>25</issue><spage>9169</spage><epage>9174</epage><pages>9169-9174</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Dynamic changes in histone modification are critical for regulating DNA double-strand break (DSB) repair. Activation of the Tip60 acetyltransferase by DSBs requires interaction of Tip60 with histone H3 methylated on lysine 9 (H3K9me3). However, how H3K9 methylation is regulated during DSB repair is not known. Here, we demonstrate that a complex containing kap-1, HP1, and the H3K9 methyltransferase suv39h1 is rapidly loaded onto the chromatin at DSBs. Suv39h1 methylates H3K9, facilitating loading of additional kap-1/HP1/suv39h1 through binding of HP1’s chromodomain to the nascent H3K9me3. This process initiates cycles of kap-1/HP1/suv39h1 loading and H3K9 methylation that facilitate spreading of H3K9me3 and kap-1/HP1/suv39h1 complexes for tens of kilobases away from the DSB. These domains of H3K9me3 function to activate the Tip60 acetyltransferase, allowing Tip60 to acetylate both ataxia telangiectasia-mutated (ATM) kinase and histone H4. Consequently, cells lacking suv39h1 display defective activation of Tip60 and ATM, decreased DSB repair, and increased radiosensitivity. Importantly, activated ATM rapidly phosphorylates kap-1, leading to release of the repressive kap-1/HP1/suv39h1 complex from the chromatin. ATM activation therefore functions as a negative feedback loop to remove repressive suv39h1 complexes at DSBs, which may limit DSB repair. Recruitment of kap-1/HP1/suv39h1 to DSBs therefore provides a mechanism for transiently increasing the levels of H3K9me3 in open chromatin domains that lack H3K9me3 and thereby promoting efficient activation of Tip60 and ATM in these regions. Further, transient formation of repressive chromatin may be critical for stabilizing the damaged chromatin and for remodeling the chromatin to create an efficient template for the DNA repair machinery.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>24927542</pmid><doi>10.1073/pnas.1403565111</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2014-06, Vol.111 (25), p.9169-9174
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_1540710788
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Antibodies
ataxia (disorder)
Ataxia Telangiectasia Mutated Proteins - genetics
Ataxia Telangiectasia Mutated Proteins - metabolism
Biological Sciences
Chromatin
Chromatin - genetics
Chromatin - metabolism
Chromatin Assembly and Disassembly
Deoxyribonucleic acid
DNA
DNA Breaks, Double-Stranded
DNA damage
DNA methylation
DNA repair
equipment maintenance and repair
Gene expression regulation
HEK293 Cells
HeLa Cells
Heterochromatin
Histone Acetyltransferases - genetics
Histone Acetyltransferases - metabolism
Histones
Histones - genetics
Histones - metabolism
Humans
Kinases
Lasers
lysine
Lysine - genetics
Lysine - metabolism
Lysine Acetyltransferase 5
Methylation
methyltransferases
Methyltransferases - genetics
Methyltransferases - metabolism
Phosphorylation
Protein Structure, Tertiary
Repressor Proteins - genetics
Repressor Proteins - metabolism
Tripartite Motif-Containing Protein 28
title DNA double-strand breaks promote methylation of histone H3 on lysine 9 and transient formation of repressive chromatin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T08%3A47%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DNA%20double-strand%20breaks%20promote%20methylation%20of%20histone%20H3%20on%20lysine%209%20and%20transient%20formation%20of%20repressive%20chromatin&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ayrapetov,%20Marina%20K.&rft.date=2014-06-24&rft.volume=111&rft.issue=25&rft.spage=9169&rft.epage=9174&rft.pages=9169-9174&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1403565111&rft_dat=%3Cjstor_proqu%3E23802499%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1543583418&rft_id=info:pmid/24927542&rft_jstor_id=23802499&rfr_iscdi=true