Agrobacterium-mediated genetic transformation and plant regeneration of the hardwood tree species Fraxinus profunda
KEY MESSAGE : This transformation and regeneration protocol provides an integral framework for the genetic improvement of Fraxinus profunda (pumpkin ash) for future development of plants resistant to the emerald ash borer. Using mature hypocotyls as the initial explants, an Agrobacterium tumefaciens...
Gespeichert in:
Veröffentlicht in: | Plant cell reports 2014-06, Vol.33 (6), p.861-870 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 870 |
---|---|
container_issue | 6 |
container_start_page | 861 |
container_title | Plant cell reports |
container_volume | 33 |
creator | Stevens, Micah E Pijut, Paula M |
description | KEY MESSAGE : This transformation and regeneration protocol provides an integral framework for the genetic improvement of Fraxinus profunda (pumpkin ash) for future development of plants resistant to the emerald ash borer. Using mature hypocotyls as the initial explants, an Agrobacterium tumefaciens-mediated genetic transformation system was successfully developed for pumpkin ash (Fraxinus profunda). This transformation protocol is an invaluable tool to combat the highly aggressive, non-native emerald ash borer (EAB), which has the potential to eliminate native Fraxinus spp. from the natural landscape. Hypocotyls were successfully transformed with Agrobacterium strain EHA105 harboring the pq35GR vector, containing an enhanced green fluorescent protein (EGFP) as well as a fusion gene between neomycin phosphotransferase (nptII) and gusA. Hypocotyls were cultured for 7 days on Murashige and Skoog (MS) medium with 22.2 μM 6-benzyladenine (BA), 4.5 μM thidiazuron (TDZ), 50 mg L⁻¹ adenine hemisulfate (AS), and 10 % coconut water (CW) prior to transformation. Hypocotyls were transformed using 90 s sonication plus 10 min vacuum infiltration after Agrobacterium was exposed to 100 μM acetosyringone for 1 h. Adventitious shoots were regenerated on MS medium with 22.2 μM BA, 4.5 μM TDZ, 50 mg L⁻¹ AS, 10 % CW, 400 mg L⁻¹ timentin, and 20 mg L⁻¹ kanamycin. Timentin at 400 and 20 mg L⁻¹ kanamycin were most effective at controlling Agrobacterium growth and selecting for transformed cells, respectively. The presence of nptII, GUS (β-glucuronidase), and EGFP in transformed plants was confirmed using polymerase chain reaction (PCR), while the expression of EGFP was also confirmed through fluorescent microscopy and reverse transcription-PCR. This transformation protocol provides an integral foundation for future genetic modifications of F. profunda to provide resistance to EAB. |
doi_str_mv | 10.1007/s00299-014-1562-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1540235681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1540235681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-17c9e192225af7f8c74226b18406a75b5e38872ca8284f05b6dbe8df497c93753</originalsourceid><addsrcrecordid>eNqNkkFvFSEUhYnR2NfqD3CjJG66GYULDMyyaayaNHGhTdwRhrm80rwZnjCT6r-XyVRjXBgTEgh851wuB0JecPaGM6bfFsag6xrGZcNVCw08IjsuRV0w8fUx2TENvNGayxNyWsodq6DQ7VNyAlJ2AhTsSLnY59Q7P2OOy9iMOEQ340D3OOEcPZ2zm0pIeXRzTBN100CPBzfNNOOK5G07BTrfIr11ebhPaagqRFqO6CMWepXd9zgthR5zCss0uGfkSXCHgs8f5jNyc_Xuy-WH5vrT-4-XF9eNl52aG659h7wDAOWCDsZrCdD23EjWOq16hcIYDd4ZMDIw1bdDj2YIsqtCoZU4I-ebby38bcEy2zEWj4d6f0xLsVxJBkK1hv8HCkq3EtiKvv4LvUtLnmojK1Vf3ygBleIb5XMqJWOwxxxHl39Yzuwant3CszUTu4ZnV83LB-elr0H8VvxKqwKwAaUeTXvMf5T-h-urTRRcsm6fY7E3n2sjsn6HOgwTPwH2pa3Z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1524328532</pqid></control><display><type>article</type><title>Agrobacterium-mediated genetic transformation and plant regeneration of the hardwood tree species Fraxinus profunda</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Stevens, Micah E ; Pijut, Paula M</creator><creatorcontrib>Stevens, Micah E ; Pijut, Paula M</creatorcontrib><description>KEY MESSAGE : This transformation and regeneration protocol provides an integral framework for the genetic improvement of Fraxinus profunda (pumpkin ash) for future development of plants resistant to the emerald ash borer. Using mature hypocotyls as the initial explants, an Agrobacterium tumefaciens-mediated genetic transformation system was successfully developed for pumpkin ash (Fraxinus profunda). This transformation protocol is an invaluable tool to combat the highly aggressive, non-native emerald ash borer (EAB), which has the potential to eliminate native Fraxinus spp. from the natural landscape. Hypocotyls were successfully transformed with Agrobacterium strain EHA105 harboring the pq35GR vector, containing an enhanced green fluorescent protein (EGFP) as well as a fusion gene between neomycin phosphotransferase (nptII) and gusA. Hypocotyls were cultured for 7 days on Murashige and Skoog (MS) medium with 22.2 μM 6-benzyladenine (BA), 4.5 μM thidiazuron (TDZ), 50 mg L⁻¹ adenine hemisulfate (AS), and 10 % coconut water (CW) prior to transformation. Hypocotyls were transformed using 90 s sonication plus 10 min vacuum infiltration after Agrobacterium was exposed to 100 μM acetosyringone for 1 h. Adventitious shoots were regenerated on MS medium with 22.2 μM BA, 4.5 μM TDZ, 50 mg L⁻¹ AS, 10 % CW, 400 mg L⁻¹ timentin, and 20 mg L⁻¹ kanamycin. Timentin at 400 and 20 mg L⁻¹ kanamycin were most effective at controlling Agrobacterium growth and selecting for transformed cells, respectively. The presence of nptII, GUS (β-glucuronidase), and EGFP in transformed plants was confirmed using polymerase chain reaction (PCR), while the expression of EGFP was also confirmed through fluorescent microscopy and reverse transcription-PCR. This transformation protocol provides an integral foundation for future genetic modifications of F. profunda to provide resistance to EAB.</description><identifier>ISSN: 0721-7714</identifier><identifier>EISSN: 1432-203X</identifier><identifier>DOI: 10.1007/s00299-014-1562-2</identifier><identifier>PMID: 24493252</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>acetosyringone ; adventitious shoots ; Agrilus planipennis ; Agrobacterium ; Agrobacterium tumefaciens - genetics ; beta-glucuronidase ; Biomedical and Life Sciences ; Biotechnology ; Cell Biology ; Clavulanic Acids - pharmacology ; coconut water ; fluorescence microscopy ; Fraxinus ; Fraxinus - genetics ; Fraxinus - physiology ; Fraxinus profunda ; gene fusion ; Gene Transfer Techniques ; Genes, Reporter ; genetic improvement ; genetic transformation ; Genetic Vectors - genetics ; green fluorescent protein ; hardwood ; Hypocotyl - genetics ; Hypocotyl - physiology ; hypocotyls ; Invasive insects ; kanamycin ; Kanamycin - pharmacology ; kanamycin kinase ; Life Sciences ; Original Paper ; Plant Biochemistry ; Plant Leaves - genetics ; Plant Leaves - physiology ; Plant Roots - genetics ; Plant Roots - physiology ; Plant Sciences ; Plant Shoots - genetics ; Plant Shoots - physiology ; Plant species ; Plants, Genetically Modified ; pumpkins ; Regeneration ; reverse transcriptase polymerase chain reaction ; thidiazuron ; Ticarcillin - pharmacology ; Transformation, Genetic ; Trees</subject><ispartof>Plant cell reports, 2014-06, Vol.33 (6), p.861-870</ispartof><rights>Springer-Verlag Berlin Heidelberg (outside the USA) 2014</rights><rights>Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-17c9e192225af7f8c74226b18406a75b5e38872ca8284f05b6dbe8df497c93753</citedby><cites>FETCH-LOGICAL-c495t-17c9e192225af7f8c74226b18406a75b5e38872ca8284f05b6dbe8df497c93753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00299-014-1562-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00299-014-1562-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24493252$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stevens, Micah E</creatorcontrib><creatorcontrib>Pijut, Paula M</creatorcontrib><title>Agrobacterium-mediated genetic transformation and plant regeneration of the hardwood tree species Fraxinus profunda</title><title>Plant cell reports</title><addtitle>Plant Cell Rep</addtitle><addtitle>Plant Cell Rep</addtitle><description>KEY MESSAGE : This transformation and regeneration protocol provides an integral framework for the genetic improvement of Fraxinus profunda (pumpkin ash) for future development of plants resistant to the emerald ash borer. Using mature hypocotyls as the initial explants, an Agrobacterium tumefaciens-mediated genetic transformation system was successfully developed for pumpkin ash (Fraxinus profunda). This transformation protocol is an invaluable tool to combat the highly aggressive, non-native emerald ash borer (EAB), which has the potential to eliminate native Fraxinus spp. from the natural landscape. Hypocotyls were successfully transformed with Agrobacterium strain EHA105 harboring the pq35GR vector, containing an enhanced green fluorescent protein (EGFP) as well as a fusion gene between neomycin phosphotransferase (nptII) and gusA. Hypocotyls were cultured for 7 days on Murashige and Skoog (MS) medium with 22.2 μM 6-benzyladenine (BA), 4.5 μM thidiazuron (TDZ), 50 mg L⁻¹ adenine hemisulfate (AS), and 10 % coconut water (CW) prior to transformation. Hypocotyls were transformed using 90 s sonication plus 10 min vacuum infiltration after Agrobacterium was exposed to 100 μM acetosyringone for 1 h. Adventitious shoots were regenerated on MS medium with 22.2 μM BA, 4.5 μM TDZ, 50 mg L⁻¹ AS, 10 % CW, 400 mg L⁻¹ timentin, and 20 mg L⁻¹ kanamycin. Timentin at 400 and 20 mg L⁻¹ kanamycin were most effective at controlling Agrobacterium growth and selecting for transformed cells, respectively. The presence of nptII, GUS (β-glucuronidase), and EGFP in transformed plants was confirmed using polymerase chain reaction (PCR), while the expression of EGFP was also confirmed through fluorescent microscopy and reverse transcription-PCR. This transformation protocol provides an integral foundation for future genetic modifications of F. profunda to provide resistance to EAB.</description><subject>acetosyringone</subject><subject>adventitious shoots</subject><subject>Agrilus planipennis</subject><subject>Agrobacterium</subject><subject>Agrobacterium tumefaciens - genetics</subject><subject>beta-glucuronidase</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Cell Biology</subject><subject>Clavulanic Acids - pharmacology</subject><subject>coconut water</subject><subject>fluorescence microscopy</subject><subject>Fraxinus</subject><subject>Fraxinus - genetics</subject><subject>Fraxinus - physiology</subject><subject>Fraxinus profunda</subject><subject>gene fusion</subject><subject>Gene Transfer Techniques</subject><subject>Genes, Reporter</subject><subject>genetic improvement</subject><subject>genetic transformation</subject><subject>Genetic Vectors - genetics</subject><subject>green fluorescent protein</subject><subject>hardwood</subject><subject>Hypocotyl - genetics</subject><subject>Hypocotyl - physiology</subject><subject>hypocotyls</subject><subject>Invasive insects</subject><subject>kanamycin</subject><subject>Kanamycin - pharmacology</subject><subject>kanamycin kinase</subject><subject>Life Sciences</subject><subject>Original Paper</subject><subject>Plant Biochemistry</subject><subject>Plant Leaves - genetics</subject><subject>Plant Leaves - physiology</subject><subject>Plant Roots - genetics</subject><subject>Plant Roots - physiology</subject><subject>Plant Sciences</subject><subject>Plant Shoots - genetics</subject><subject>Plant Shoots - physiology</subject><subject>Plant species</subject><subject>Plants, Genetically Modified</subject><subject>pumpkins</subject><subject>Regeneration</subject><subject>reverse transcriptase polymerase chain reaction</subject><subject>thidiazuron</subject><subject>Ticarcillin - pharmacology</subject><subject>Transformation, Genetic</subject><subject>Trees</subject><issn>0721-7714</issn><issn>1432-203X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkkFvFSEUhYnR2NfqD3CjJG66GYULDMyyaayaNHGhTdwRhrm80rwZnjCT6r-XyVRjXBgTEgh851wuB0JecPaGM6bfFsag6xrGZcNVCw08IjsuRV0w8fUx2TENvNGayxNyWsodq6DQ7VNyAlJ2AhTsSLnY59Q7P2OOy9iMOEQ340D3OOEcPZ2zm0pIeXRzTBN100CPBzfNNOOK5G07BTrfIr11ebhPaagqRFqO6CMWepXd9zgthR5zCss0uGfkSXCHgs8f5jNyc_Xuy-WH5vrT-4-XF9eNl52aG659h7wDAOWCDsZrCdD23EjWOq16hcIYDd4ZMDIw1bdDj2YIsqtCoZU4I-ebby38bcEy2zEWj4d6f0xLsVxJBkK1hv8HCkq3EtiKvv4LvUtLnmojK1Vf3ygBleIb5XMqJWOwxxxHl39Yzuwant3CszUTu4ZnV83LB-elr0H8VvxKqwKwAaUeTXvMf5T-h-urTRRcsm6fY7E3n2sjsn6HOgwTPwH2pa3Z</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Stevens, Micah E</creator><creator>Pijut, Paula M</creator><general>Springer-Verlag</general><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20140601</creationdate><title>Agrobacterium-mediated genetic transformation and plant regeneration of the hardwood tree species Fraxinus profunda</title><author>Stevens, Micah E ; Pijut, Paula M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-17c9e192225af7f8c74226b18406a75b5e38872ca8284f05b6dbe8df497c93753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>acetosyringone</topic><topic>adventitious shoots</topic><topic>Agrilus planipennis</topic><topic>Agrobacterium</topic><topic>Agrobacterium tumefaciens - genetics</topic><topic>beta-glucuronidase</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Cell Biology</topic><topic>Clavulanic Acids - pharmacology</topic><topic>coconut water</topic><topic>fluorescence microscopy</topic><topic>Fraxinus</topic><topic>Fraxinus - genetics</topic><topic>Fraxinus - physiology</topic><topic>Fraxinus profunda</topic><topic>gene fusion</topic><topic>Gene Transfer Techniques</topic><topic>Genes, Reporter</topic><topic>genetic improvement</topic><topic>genetic transformation</topic><topic>Genetic Vectors - genetics</topic><topic>green fluorescent protein</topic><topic>hardwood</topic><topic>Hypocotyl - genetics</topic><topic>Hypocotyl - physiology</topic><topic>hypocotyls</topic><topic>Invasive insects</topic><topic>kanamycin</topic><topic>Kanamycin - pharmacology</topic><topic>kanamycin kinase</topic><topic>Life Sciences</topic><topic>Original Paper</topic><topic>Plant Biochemistry</topic><topic>Plant Leaves - genetics</topic><topic>Plant Leaves - physiology</topic><topic>Plant Roots - genetics</topic><topic>Plant Roots - physiology</topic><topic>Plant Sciences</topic><topic>Plant Shoots - genetics</topic><topic>Plant Shoots - physiology</topic><topic>Plant species</topic><topic>Plants, Genetically Modified</topic><topic>pumpkins</topic><topic>Regeneration</topic><topic>reverse transcriptase polymerase chain reaction</topic><topic>thidiazuron</topic><topic>Ticarcillin - pharmacology</topic><topic>Transformation, Genetic</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stevens, Micah E</creatorcontrib><creatorcontrib>Pijut, Paula M</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Plant cell reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stevens, Micah E</au><au>Pijut, Paula M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Agrobacterium-mediated genetic transformation and plant regeneration of the hardwood tree species Fraxinus profunda</atitle><jtitle>Plant cell reports</jtitle><stitle>Plant Cell Rep</stitle><addtitle>Plant Cell Rep</addtitle><date>2014-06-01</date><risdate>2014</risdate><volume>33</volume><issue>6</issue><spage>861</spage><epage>870</epage><pages>861-870</pages><issn>0721-7714</issn><eissn>1432-203X</eissn><abstract>KEY MESSAGE : This transformation and regeneration protocol provides an integral framework for the genetic improvement of Fraxinus profunda (pumpkin ash) for future development of plants resistant to the emerald ash borer. Using mature hypocotyls as the initial explants, an Agrobacterium tumefaciens-mediated genetic transformation system was successfully developed for pumpkin ash (Fraxinus profunda). This transformation protocol is an invaluable tool to combat the highly aggressive, non-native emerald ash borer (EAB), which has the potential to eliminate native Fraxinus spp. from the natural landscape. Hypocotyls were successfully transformed with Agrobacterium strain EHA105 harboring the pq35GR vector, containing an enhanced green fluorescent protein (EGFP) as well as a fusion gene between neomycin phosphotransferase (nptII) and gusA. Hypocotyls were cultured for 7 days on Murashige and Skoog (MS) medium with 22.2 μM 6-benzyladenine (BA), 4.5 μM thidiazuron (TDZ), 50 mg L⁻¹ adenine hemisulfate (AS), and 10 % coconut water (CW) prior to transformation. Hypocotyls were transformed using 90 s sonication plus 10 min vacuum infiltration after Agrobacterium was exposed to 100 μM acetosyringone for 1 h. Adventitious shoots were regenerated on MS medium with 22.2 μM BA, 4.5 μM TDZ, 50 mg L⁻¹ AS, 10 % CW, 400 mg L⁻¹ timentin, and 20 mg L⁻¹ kanamycin. Timentin at 400 and 20 mg L⁻¹ kanamycin were most effective at controlling Agrobacterium growth and selecting for transformed cells, respectively. The presence of nptII, GUS (β-glucuronidase), and EGFP in transformed plants was confirmed using polymerase chain reaction (PCR), while the expression of EGFP was also confirmed through fluorescent microscopy and reverse transcription-PCR. This transformation protocol provides an integral foundation for future genetic modifications of F. profunda to provide resistance to EAB.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>24493252</pmid><doi>10.1007/s00299-014-1562-2</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0721-7714 |
ispartof | Plant cell reports, 2014-06, Vol.33 (6), p.861-870 |
issn | 0721-7714 1432-203X |
language | eng |
recordid | cdi_proquest_miscellaneous_1540235681 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | acetosyringone adventitious shoots Agrilus planipennis Agrobacterium Agrobacterium tumefaciens - genetics beta-glucuronidase Biomedical and Life Sciences Biotechnology Cell Biology Clavulanic Acids - pharmacology coconut water fluorescence microscopy Fraxinus Fraxinus - genetics Fraxinus - physiology Fraxinus profunda gene fusion Gene Transfer Techniques Genes, Reporter genetic improvement genetic transformation Genetic Vectors - genetics green fluorescent protein hardwood Hypocotyl - genetics Hypocotyl - physiology hypocotyls Invasive insects kanamycin Kanamycin - pharmacology kanamycin kinase Life Sciences Original Paper Plant Biochemistry Plant Leaves - genetics Plant Leaves - physiology Plant Roots - genetics Plant Roots - physiology Plant Sciences Plant Shoots - genetics Plant Shoots - physiology Plant species Plants, Genetically Modified pumpkins Regeneration reverse transcriptase polymerase chain reaction thidiazuron Ticarcillin - pharmacology Transformation, Genetic Trees |
title | Agrobacterium-mediated genetic transformation and plant regeneration of the hardwood tree species Fraxinus profunda |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T01%3A30%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Agrobacterium-mediated%20genetic%20transformation%20and%20plant%20regeneration%20of%20the%20hardwood%20tree%20species%20Fraxinus%20profunda&rft.jtitle=Plant%20cell%20reports&rft.au=Stevens,%20Micah%20E&rft.date=2014-06-01&rft.volume=33&rft.issue=6&rft.spage=861&rft.epage=870&rft.pages=861-870&rft.issn=0721-7714&rft.eissn=1432-203X&rft_id=info:doi/10.1007/s00299-014-1562-2&rft_dat=%3Cproquest_cross%3E1540235681%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1524328532&rft_id=info:pmid/24493252&rfr_iscdi=true |