Effects of geomorphic process domains on river ecosystems: a comparison of floodplain and confined valley segments

The geomorphic template of streams and rivers exerts strong controls on the structure and function of aquatic ecosystems. However, relationships between stream geomorphology and ecosystem structure and function are not always clear and have not been investigated equally across spatial scales. In mon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:River research and applications 2014-06, Vol.30 (5), p.617-630
Hauptverfasser: Bellmore, J. R, Baxter, C. V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The geomorphic template of streams and rivers exerts strong controls on the structure and function of aquatic ecosystems. However, relationships between stream geomorphology and ecosystem structure and function are not always clear and have not been investigated equally across spatial scales. In montane regions, rivers often alternate between canyon‐confined segments and unconfined floodplain segments. Yet, few studies have evaluated how this pattern influences aquatic ecosystems. Here, we compared five confined river segments to five paired floodplain segments in terms of allochthonous inputs, aquatic primary producer and invertebrate production, stream retentive capacity, and aquatic invertebrate community composition. We found that floodplains had a higher (up to 4×) retentive capacity, a greater richness (58%) of aquatic invertebrates, and a distinctly different invertebrate community, relative to confined segments. Contrary to our expectations, allochthonous inputs were approximately 2× greater for confined segments, and aquatic primary and invertebrate production exhibited no consistent differences between segment types. However, results did indicate that floodplains had greater overall community respiration than confined segments. Together, these findings suggest that floodplain and confined segments do indeed differ in terms of aquatic ecosystem structure and function but not entirely as expected. Confined segments had greater allochthonous inputs but a lower capacity to retain those inputs, whereas floodplains had a high capacity to retain transported organic matter and also a more diverse community of invertebrates and higher overall community respiration to ‘digest’ retained organic matter. If these findings are generalizable, then they would indicate that confined segments are sources for organic matter within river networks, whereas floodplains act as filters, removing and processing organic matter transported from upstream confined segments. Copyright © 2013 John Wiley & Sons, Ltd.
ISSN:1535-1459
1535-1467
DOI:10.1002/rra.2672