Modeling a Crowdsourced Definition of Molecular Complexity

This paper brings together the concepts of molecular complexity and crowdsourcing. An exercise was done at Merck where 386 chemists voted on the molecular complexity (on a scale of 1–5) of 2681 molecules taken from various sources: public, licensed, and in-house. The meanComplexity of a molecule is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical information and modeling 2014-06, Vol.54 (6), p.1604-1616
Hauptverfasser: Sheridan, Robert P, Zorn, Nicolas, Sherer, Edward C, Campeau, Louis-Charles, Chang, Charlie (Zhenyu), Cumming, Jared, Maddess, Matthew L, Nantermet, Philippe G, Sinz, Christopher J, O’Shea, Paul D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1616
container_issue 6
container_start_page 1604
container_title Journal of chemical information and modeling
container_volume 54
creator Sheridan, Robert P
Zorn, Nicolas
Sherer, Edward C
Campeau, Louis-Charles
Chang, Charlie (Zhenyu)
Cumming, Jared
Maddess, Matthew L
Nantermet, Philippe G
Sinz, Christopher J
O’Shea, Paul D
description This paper brings together the concepts of molecular complexity and crowdsourcing. An exercise was done at Merck where 386 chemists voted on the molecular complexity (on a scale of 1–5) of 2681 molecules taken from various sources: public, licensed, and in-house. The meanComplexity of a molecule is the average over all votes for that molecule. As long as enough votes are cast per molecule, we find meanComplexity is quite easy to model with QSAR methods using only a handful of physical descriptors (e.g., number of chiral centers, number of unique topological torsions, a Wiener index, etc.). The high level of self-consistency of the model (cross-validated R2 ∼0.88) is remarkable given that our chemists do not agree with each other strongly about the complexity of any given molecule. Thus, the power of crowdsourcing is clearly demonstrated in this case. The meanComplexity appears to be correlated with at least one metric of synthetic complexity from the literature derived in a different way and is correlated with values of process mass intensity (PMI) from the literature and from in-house studies. Complexity can be used to differentiate between in-house programs and to follow a program over time.
doi_str_mv 10.1021/ci5001778
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1539709797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3359812481</sourcerecordid><originalsourceid>FETCH-LOGICAL-a343t-81df69e4cf2ae17f7a3f7d2a441a267269b055c6b944db242a2a26c9e9a51b873</originalsourceid><addsrcrecordid>eNplkE1LxDAQhoMorq4e_ANSEEEP1SRNk8ab1E_YxYuCt5LmQ7K0zZq06P57s-wHosxh5vDwzswDwAmCVwhidC1tDiFirNgBBygnPOUUvu9u5pzTETgMYQZhlnGK98EIkwLiouAH4GbqlG5s95GIpPTuSwU3eKlVcqeN7WxvXZc4k0xdo-XQCJ-Urp03-tv2iyOwZ0QT9PG6j8Hbw_1r-ZROXh6fy9tJKjKS9WmBlKFcE2mw0IgZJjLDFBaEIIEpw5TXMM8lrTkhqsYEi1hUcs1FjuqCZWNwscqde_c56NBXrQ1SN43otBtChfKMM8gZX6Jnf9BZfKeL10WKYMwYjBLG4HJFSe9C8NpUc29b4RcVgtVSaLUVGtnTdeJQt1ptyY3BCJyvACHDr23_gn4Alll6IQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1542277000</pqid></control><display><type>article</type><title>Modeling a Crowdsourced Definition of Molecular Complexity</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Sheridan, Robert P ; Zorn, Nicolas ; Sherer, Edward C ; Campeau, Louis-Charles ; Chang, Charlie (Zhenyu) ; Cumming, Jared ; Maddess, Matthew L ; Nantermet, Philippe G ; Sinz, Christopher J ; O’Shea, Paul D</creator><creatorcontrib>Sheridan, Robert P ; Zorn, Nicolas ; Sherer, Edward C ; Campeau, Louis-Charles ; Chang, Charlie (Zhenyu) ; Cumming, Jared ; Maddess, Matthew L ; Nantermet, Philippe G ; Sinz, Christopher J ; O’Shea, Paul D</creatorcontrib><description>This paper brings together the concepts of molecular complexity and crowdsourcing. An exercise was done at Merck where 386 chemists voted on the molecular complexity (on a scale of 1–5) of 2681 molecules taken from various sources: public, licensed, and in-house. The meanComplexity of a molecule is the average over all votes for that molecule. As long as enough votes are cast per molecule, we find meanComplexity is quite easy to model with QSAR methods using only a handful of physical descriptors (e.g., number of chiral centers, number of unique topological torsions, a Wiener index, etc.). The high level of self-consistency of the model (cross-validated R2 ∼0.88) is remarkable given that our chemists do not agree with each other strongly about the complexity of any given molecule. Thus, the power of crowdsourcing is clearly demonstrated in this case. The meanComplexity appears to be correlated with at least one metric of synthetic complexity from the literature derived in a different way and is correlated with values of process mass intensity (PMI) from the literature and from in-house studies. Complexity can be used to differentiate between in-house programs and to follow a program over time.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/ci5001778</identifier><identifier>PMID: 24802889</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemists ; Correlation analysis ; Crowdsourcing ; Databases, Chemical ; Humans ; Models, Chemical ; Molecular Structure ; Molecules ; Quantitative Structure-Activity Relationship ; Stereoisomerism</subject><ispartof>Journal of chemical information and modeling, 2014-06, Vol.54 (6), p.1604-1616</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>Copyright American Chemical Society Jun 23, 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a343t-81df69e4cf2ae17f7a3f7d2a441a267269b055c6b944db242a2a26c9e9a51b873</citedby><cites>FETCH-LOGICAL-a343t-81df69e4cf2ae17f7a3f7d2a441a267269b055c6b944db242a2a26c9e9a51b873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ci5001778$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ci5001778$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24802889$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sheridan, Robert P</creatorcontrib><creatorcontrib>Zorn, Nicolas</creatorcontrib><creatorcontrib>Sherer, Edward C</creatorcontrib><creatorcontrib>Campeau, Louis-Charles</creatorcontrib><creatorcontrib>Chang, Charlie (Zhenyu)</creatorcontrib><creatorcontrib>Cumming, Jared</creatorcontrib><creatorcontrib>Maddess, Matthew L</creatorcontrib><creatorcontrib>Nantermet, Philippe G</creatorcontrib><creatorcontrib>Sinz, Christopher J</creatorcontrib><creatorcontrib>O’Shea, Paul D</creatorcontrib><title>Modeling a Crowdsourced Definition of Molecular Complexity</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>This paper brings together the concepts of molecular complexity and crowdsourcing. An exercise was done at Merck where 386 chemists voted on the molecular complexity (on a scale of 1–5) of 2681 molecules taken from various sources: public, licensed, and in-house. The meanComplexity of a molecule is the average over all votes for that molecule. As long as enough votes are cast per molecule, we find meanComplexity is quite easy to model with QSAR methods using only a handful of physical descriptors (e.g., number of chiral centers, number of unique topological torsions, a Wiener index, etc.). The high level of self-consistency of the model (cross-validated R2 ∼0.88) is remarkable given that our chemists do not agree with each other strongly about the complexity of any given molecule. Thus, the power of crowdsourcing is clearly demonstrated in this case. The meanComplexity appears to be correlated with at least one metric of synthetic complexity from the literature derived in a different way and is correlated with values of process mass intensity (PMI) from the literature and from in-house studies. Complexity can be used to differentiate between in-house programs and to follow a program over time.</description><subject>Chemists</subject><subject>Correlation analysis</subject><subject>Crowdsourcing</subject><subject>Databases, Chemical</subject><subject>Humans</subject><subject>Models, Chemical</subject><subject>Molecular Structure</subject><subject>Molecules</subject><subject>Quantitative Structure-Activity Relationship</subject><subject>Stereoisomerism</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNplkE1LxDAQhoMorq4e_ANSEEEP1SRNk8ab1E_YxYuCt5LmQ7K0zZq06P57s-wHosxh5vDwzswDwAmCVwhidC1tDiFirNgBBygnPOUUvu9u5pzTETgMYQZhlnGK98EIkwLiouAH4GbqlG5s95GIpPTuSwU3eKlVcqeN7WxvXZc4k0xdo-XQCJ-Urp03-tv2iyOwZ0QT9PG6j8Hbw_1r-ZROXh6fy9tJKjKS9WmBlKFcE2mw0IgZJjLDFBaEIIEpw5TXMM8lrTkhqsYEi1hUcs1FjuqCZWNwscqde_c56NBXrQ1SN43otBtChfKMM8gZX6Jnf9BZfKeL10WKYMwYjBLG4HJFSe9C8NpUc29b4RcVgtVSaLUVGtnTdeJQt1ptyY3BCJyvACHDr23_gn4Alll6IQ</recordid><startdate>20140623</startdate><enddate>20140623</enddate><creator>Sheridan, Robert P</creator><creator>Zorn, Nicolas</creator><creator>Sherer, Edward C</creator><creator>Campeau, Louis-Charles</creator><creator>Chang, Charlie (Zhenyu)</creator><creator>Cumming, Jared</creator><creator>Maddess, Matthew L</creator><creator>Nantermet, Philippe G</creator><creator>Sinz, Christopher J</creator><creator>O’Shea, Paul D</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20140623</creationdate><title>Modeling a Crowdsourced Definition of Molecular Complexity</title><author>Sheridan, Robert P ; Zorn, Nicolas ; Sherer, Edward C ; Campeau, Louis-Charles ; Chang, Charlie (Zhenyu) ; Cumming, Jared ; Maddess, Matthew L ; Nantermet, Philippe G ; Sinz, Christopher J ; O’Shea, Paul D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a343t-81df69e4cf2ae17f7a3f7d2a441a267269b055c6b944db242a2a26c9e9a51b873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Chemists</topic><topic>Correlation analysis</topic><topic>Crowdsourcing</topic><topic>Databases, Chemical</topic><topic>Humans</topic><topic>Models, Chemical</topic><topic>Molecular Structure</topic><topic>Molecules</topic><topic>Quantitative Structure-Activity Relationship</topic><topic>Stereoisomerism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sheridan, Robert P</creatorcontrib><creatorcontrib>Zorn, Nicolas</creatorcontrib><creatorcontrib>Sherer, Edward C</creatorcontrib><creatorcontrib>Campeau, Louis-Charles</creatorcontrib><creatorcontrib>Chang, Charlie (Zhenyu)</creatorcontrib><creatorcontrib>Cumming, Jared</creatorcontrib><creatorcontrib>Maddess, Matthew L</creatorcontrib><creatorcontrib>Nantermet, Philippe G</creatorcontrib><creatorcontrib>Sinz, Christopher J</creatorcontrib><creatorcontrib>O’Shea, Paul D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sheridan, Robert P</au><au>Zorn, Nicolas</au><au>Sherer, Edward C</au><au>Campeau, Louis-Charles</au><au>Chang, Charlie (Zhenyu)</au><au>Cumming, Jared</au><au>Maddess, Matthew L</au><au>Nantermet, Philippe G</au><au>Sinz, Christopher J</au><au>O’Shea, Paul D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling a Crowdsourced Definition of Molecular Complexity</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2014-06-23</date><risdate>2014</risdate><volume>54</volume><issue>6</issue><spage>1604</spage><epage>1616</epage><pages>1604-1616</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>This paper brings together the concepts of molecular complexity and crowdsourcing. An exercise was done at Merck where 386 chemists voted on the molecular complexity (on a scale of 1–5) of 2681 molecules taken from various sources: public, licensed, and in-house. The meanComplexity of a molecule is the average over all votes for that molecule. As long as enough votes are cast per molecule, we find meanComplexity is quite easy to model with QSAR methods using only a handful of physical descriptors (e.g., number of chiral centers, number of unique topological torsions, a Wiener index, etc.). The high level of self-consistency of the model (cross-validated R2 ∼0.88) is remarkable given that our chemists do not agree with each other strongly about the complexity of any given molecule. Thus, the power of crowdsourcing is clearly demonstrated in this case. The meanComplexity appears to be correlated with at least one metric of synthetic complexity from the literature derived in a different way and is correlated with values of process mass intensity (PMI) from the literature and from in-house studies. Complexity can be used to differentiate between in-house programs and to follow a program over time.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24802889</pmid><doi>10.1021/ci5001778</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1549-9596
ispartof Journal of chemical information and modeling, 2014-06, Vol.54 (6), p.1604-1616
issn 1549-9596
1549-960X
language eng
recordid cdi_proquest_miscellaneous_1539709797
source MEDLINE; American Chemical Society Journals
subjects Chemists
Correlation analysis
Crowdsourcing
Databases, Chemical
Humans
Models, Chemical
Molecular Structure
Molecules
Quantitative Structure-Activity Relationship
Stereoisomerism
title Modeling a Crowdsourced Definition of Molecular Complexity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T01%3A13%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20a%20Crowdsourced%20Definition%20of%20Molecular%20Complexity&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Sheridan,%20Robert%20P&rft.date=2014-06-23&rft.volume=54&rft.issue=6&rft.spage=1604&rft.epage=1616&rft.pages=1604-1616&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/ci5001778&rft_dat=%3Cproquest_cross%3E3359812481%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1542277000&rft_id=info:pmid/24802889&rfr_iscdi=true