Modeling a Crowdsourced Definition of Molecular Complexity
This paper brings together the concepts of molecular complexity and crowdsourcing. An exercise was done at Merck where 386 chemists voted on the molecular complexity (on a scale of 1–5) of 2681 molecules taken from various sources: public, licensed, and in-house. The meanComplexity of a molecule is...
Gespeichert in:
Veröffentlicht in: | Journal of chemical information and modeling 2014-06, Vol.54 (6), p.1604-1616 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1616 |
---|---|
container_issue | 6 |
container_start_page | 1604 |
container_title | Journal of chemical information and modeling |
container_volume | 54 |
creator | Sheridan, Robert P Zorn, Nicolas Sherer, Edward C Campeau, Louis-Charles Chang, Charlie (Zhenyu) Cumming, Jared Maddess, Matthew L Nantermet, Philippe G Sinz, Christopher J O’Shea, Paul D |
description | This paper brings together the concepts of molecular complexity and crowdsourcing. An exercise was done at Merck where 386 chemists voted on the molecular complexity (on a scale of 1–5) of 2681 molecules taken from various sources: public, licensed, and in-house. The meanComplexity of a molecule is the average over all votes for that molecule. As long as enough votes are cast per molecule, we find meanComplexity is quite easy to model with QSAR methods using only a handful of physical descriptors (e.g., number of chiral centers, number of unique topological torsions, a Wiener index, etc.). The high level of self-consistency of the model (cross-validated R2 ∼0.88) is remarkable given that our chemists do not agree with each other strongly about the complexity of any given molecule. Thus, the power of crowdsourcing is clearly demonstrated in this case. The meanComplexity appears to be correlated with at least one metric of synthetic complexity from the literature derived in a different way and is correlated with values of process mass intensity (PMI) from the literature and from in-house studies. Complexity can be used to differentiate between in-house programs and to follow a program over time. |
doi_str_mv | 10.1021/ci5001778 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1539709797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3359812481</sourcerecordid><originalsourceid>FETCH-LOGICAL-a343t-81df69e4cf2ae17f7a3f7d2a441a267269b055c6b944db242a2a26c9e9a51b873</originalsourceid><addsrcrecordid>eNplkE1LxDAQhoMorq4e_ANSEEEP1SRNk8ab1E_YxYuCt5LmQ7K0zZq06P57s-wHosxh5vDwzswDwAmCVwhidC1tDiFirNgBBygnPOUUvu9u5pzTETgMYQZhlnGK98EIkwLiouAH4GbqlG5s95GIpPTuSwU3eKlVcqeN7WxvXZc4k0xdo-XQCJ-Urp03-tv2iyOwZ0QT9PG6j8Hbw_1r-ZROXh6fy9tJKjKS9WmBlKFcE2mw0IgZJjLDFBaEIIEpw5TXMM8lrTkhqsYEi1hUcs1FjuqCZWNwscqde_c56NBXrQ1SN43otBtChfKMM8gZX6Jnf9BZfKeL10WKYMwYjBLG4HJFSe9C8NpUc29b4RcVgtVSaLUVGtnTdeJQt1ptyY3BCJyvACHDr23_gn4Alll6IQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1542277000</pqid></control><display><type>article</type><title>Modeling a Crowdsourced Definition of Molecular Complexity</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Sheridan, Robert P ; Zorn, Nicolas ; Sherer, Edward C ; Campeau, Louis-Charles ; Chang, Charlie (Zhenyu) ; Cumming, Jared ; Maddess, Matthew L ; Nantermet, Philippe G ; Sinz, Christopher J ; O’Shea, Paul D</creator><creatorcontrib>Sheridan, Robert P ; Zorn, Nicolas ; Sherer, Edward C ; Campeau, Louis-Charles ; Chang, Charlie (Zhenyu) ; Cumming, Jared ; Maddess, Matthew L ; Nantermet, Philippe G ; Sinz, Christopher J ; O’Shea, Paul D</creatorcontrib><description>This paper brings together the concepts of molecular complexity and crowdsourcing. An exercise was done at Merck where 386 chemists voted on the molecular complexity (on a scale of 1–5) of 2681 molecules taken from various sources: public, licensed, and in-house. The meanComplexity of a molecule is the average over all votes for that molecule. As long as enough votes are cast per molecule, we find meanComplexity is quite easy to model with QSAR methods using only a handful of physical descriptors (e.g., number of chiral centers, number of unique topological torsions, a Wiener index, etc.). The high level of self-consistency of the model (cross-validated R2 ∼0.88) is remarkable given that our chemists do not agree with each other strongly about the complexity of any given molecule. Thus, the power of crowdsourcing is clearly demonstrated in this case. The meanComplexity appears to be correlated with at least one metric of synthetic complexity from the literature derived in a different way and is correlated with values of process mass intensity (PMI) from the literature and from in-house studies. Complexity can be used to differentiate between in-house programs and to follow a program over time.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/ci5001778</identifier><identifier>PMID: 24802889</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemists ; Correlation analysis ; Crowdsourcing ; Databases, Chemical ; Humans ; Models, Chemical ; Molecular Structure ; Molecules ; Quantitative Structure-Activity Relationship ; Stereoisomerism</subject><ispartof>Journal of chemical information and modeling, 2014-06, Vol.54 (6), p.1604-1616</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>Copyright American Chemical Society Jun 23, 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a343t-81df69e4cf2ae17f7a3f7d2a441a267269b055c6b944db242a2a26c9e9a51b873</citedby><cites>FETCH-LOGICAL-a343t-81df69e4cf2ae17f7a3f7d2a441a267269b055c6b944db242a2a26c9e9a51b873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ci5001778$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ci5001778$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24802889$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sheridan, Robert P</creatorcontrib><creatorcontrib>Zorn, Nicolas</creatorcontrib><creatorcontrib>Sherer, Edward C</creatorcontrib><creatorcontrib>Campeau, Louis-Charles</creatorcontrib><creatorcontrib>Chang, Charlie (Zhenyu)</creatorcontrib><creatorcontrib>Cumming, Jared</creatorcontrib><creatorcontrib>Maddess, Matthew L</creatorcontrib><creatorcontrib>Nantermet, Philippe G</creatorcontrib><creatorcontrib>Sinz, Christopher J</creatorcontrib><creatorcontrib>O’Shea, Paul D</creatorcontrib><title>Modeling a Crowdsourced Definition of Molecular Complexity</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>This paper brings together the concepts of molecular complexity and crowdsourcing. An exercise was done at Merck where 386 chemists voted on the molecular complexity (on a scale of 1–5) of 2681 molecules taken from various sources: public, licensed, and in-house. The meanComplexity of a molecule is the average over all votes for that molecule. As long as enough votes are cast per molecule, we find meanComplexity is quite easy to model with QSAR methods using only a handful of physical descriptors (e.g., number of chiral centers, number of unique topological torsions, a Wiener index, etc.). The high level of self-consistency of the model (cross-validated R2 ∼0.88) is remarkable given that our chemists do not agree with each other strongly about the complexity of any given molecule. Thus, the power of crowdsourcing is clearly demonstrated in this case. The meanComplexity appears to be correlated with at least one metric of synthetic complexity from the literature derived in a different way and is correlated with values of process mass intensity (PMI) from the literature and from in-house studies. Complexity can be used to differentiate between in-house programs and to follow a program over time.</description><subject>Chemists</subject><subject>Correlation analysis</subject><subject>Crowdsourcing</subject><subject>Databases, Chemical</subject><subject>Humans</subject><subject>Models, Chemical</subject><subject>Molecular Structure</subject><subject>Molecules</subject><subject>Quantitative Structure-Activity Relationship</subject><subject>Stereoisomerism</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNplkE1LxDAQhoMorq4e_ANSEEEP1SRNk8ab1E_YxYuCt5LmQ7K0zZq06P57s-wHosxh5vDwzswDwAmCVwhidC1tDiFirNgBBygnPOUUvu9u5pzTETgMYQZhlnGK98EIkwLiouAH4GbqlG5s95GIpPTuSwU3eKlVcqeN7WxvXZc4k0xdo-XQCJ-Urp03-tv2iyOwZ0QT9PG6j8Hbw_1r-ZROXh6fy9tJKjKS9WmBlKFcE2mw0IgZJjLDFBaEIIEpw5TXMM8lrTkhqsYEi1hUcs1FjuqCZWNwscqde_c56NBXrQ1SN43otBtChfKMM8gZX6Jnf9BZfKeL10WKYMwYjBLG4HJFSe9C8NpUc29b4RcVgtVSaLUVGtnTdeJQt1ptyY3BCJyvACHDr23_gn4Alll6IQ</recordid><startdate>20140623</startdate><enddate>20140623</enddate><creator>Sheridan, Robert P</creator><creator>Zorn, Nicolas</creator><creator>Sherer, Edward C</creator><creator>Campeau, Louis-Charles</creator><creator>Chang, Charlie (Zhenyu)</creator><creator>Cumming, Jared</creator><creator>Maddess, Matthew L</creator><creator>Nantermet, Philippe G</creator><creator>Sinz, Christopher J</creator><creator>O’Shea, Paul D</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20140623</creationdate><title>Modeling a Crowdsourced Definition of Molecular Complexity</title><author>Sheridan, Robert P ; Zorn, Nicolas ; Sherer, Edward C ; Campeau, Louis-Charles ; Chang, Charlie (Zhenyu) ; Cumming, Jared ; Maddess, Matthew L ; Nantermet, Philippe G ; Sinz, Christopher J ; O’Shea, Paul D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a343t-81df69e4cf2ae17f7a3f7d2a441a267269b055c6b944db242a2a26c9e9a51b873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Chemists</topic><topic>Correlation analysis</topic><topic>Crowdsourcing</topic><topic>Databases, Chemical</topic><topic>Humans</topic><topic>Models, Chemical</topic><topic>Molecular Structure</topic><topic>Molecules</topic><topic>Quantitative Structure-Activity Relationship</topic><topic>Stereoisomerism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sheridan, Robert P</creatorcontrib><creatorcontrib>Zorn, Nicolas</creatorcontrib><creatorcontrib>Sherer, Edward C</creatorcontrib><creatorcontrib>Campeau, Louis-Charles</creatorcontrib><creatorcontrib>Chang, Charlie (Zhenyu)</creatorcontrib><creatorcontrib>Cumming, Jared</creatorcontrib><creatorcontrib>Maddess, Matthew L</creatorcontrib><creatorcontrib>Nantermet, Philippe G</creatorcontrib><creatorcontrib>Sinz, Christopher J</creatorcontrib><creatorcontrib>O’Shea, Paul D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sheridan, Robert P</au><au>Zorn, Nicolas</au><au>Sherer, Edward C</au><au>Campeau, Louis-Charles</au><au>Chang, Charlie (Zhenyu)</au><au>Cumming, Jared</au><au>Maddess, Matthew L</au><au>Nantermet, Philippe G</au><au>Sinz, Christopher J</au><au>O’Shea, Paul D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling a Crowdsourced Definition of Molecular Complexity</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2014-06-23</date><risdate>2014</risdate><volume>54</volume><issue>6</issue><spage>1604</spage><epage>1616</epage><pages>1604-1616</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>This paper brings together the concepts of molecular complexity and crowdsourcing. An exercise was done at Merck where 386 chemists voted on the molecular complexity (on a scale of 1–5) of 2681 molecules taken from various sources: public, licensed, and in-house. The meanComplexity of a molecule is the average over all votes for that molecule. As long as enough votes are cast per molecule, we find meanComplexity is quite easy to model with QSAR methods using only a handful of physical descriptors (e.g., number of chiral centers, number of unique topological torsions, a Wiener index, etc.). The high level of self-consistency of the model (cross-validated R2 ∼0.88) is remarkable given that our chemists do not agree with each other strongly about the complexity of any given molecule. Thus, the power of crowdsourcing is clearly demonstrated in this case. The meanComplexity appears to be correlated with at least one metric of synthetic complexity from the literature derived in a different way and is correlated with values of process mass intensity (PMI) from the literature and from in-house studies. Complexity can be used to differentiate between in-house programs and to follow a program over time.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24802889</pmid><doi>10.1021/ci5001778</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9596 |
ispartof | Journal of chemical information and modeling, 2014-06, Vol.54 (6), p.1604-1616 |
issn | 1549-9596 1549-960X |
language | eng |
recordid | cdi_proquest_miscellaneous_1539709797 |
source | MEDLINE; American Chemical Society Journals |
subjects | Chemists Correlation analysis Crowdsourcing Databases, Chemical Humans Models, Chemical Molecular Structure Molecules Quantitative Structure-Activity Relationship Stereoisomerism |
title | Modeling a Crowdsourced Definition of Molecular Complexity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T01%3A13%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20a%20Crowdsourced%20Definition%20of%20Molecular%20Complexity&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Sheridan,%20Robert%20P&rft.date=2014-06-23&rft.volume=54&rft.issue=6&rft.spage=1604&rft.epage=1616&rft.pages=1604-1616&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/ci5001778&rft_dat=%3Cproquest_cross%3E3359812481%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1542277000&rft_id=info:pmid/24802889&rfr_iscdi=true |