Hypoxia promotes ligand-independent EGF receptor signaling via hypoxia-inducible factor–mediated upregulation of caveolin-1

Caveolin-1 (CAV1) is an essential structural constituent of caveolae, specialized lipid raft microdomains on the cell membrane involved in endocytosis and signal transduction, which are inexplicably deregulated and are associated with aggressiveness in numerous cancers. Here we identify CAV1 as a di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2012-03, Vol.109 (13), p.4892-4897
Hauptverfasser: Wang, Yi, Roche, Olga, Xu, Chaoying, Moriyama, Eduardo H, Heir, Pardeep, Chung, Jacky, Roos, Frederik C, Chen, Yonghong, Finak, Greg, Milosevic, Michael, Wilson, Brian C, Teh, Bin Tean, Park, Morag, Irwin, Meredith S, Ohh, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4897
container_issue 13
container_start_page 4892
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 109
creator Wang, Yi
Roche, Olga
Xu, Chaoying
Moriyama, Eduardo H
Heir, Pardeep
Chung, Jacky
Roos, Frederik C
Chen, Yonghong
Finak, Greg
Milosevic, Michael
Wilson, Brian C
Teh, Bin Tean
Park, Morag
Irwin, Meredith S
Ohh, Michael
description Caveolin-1 (CAV1) is an essential structural constituent of caveolae, specialized lipid raft microdomains on the cell membrane involved in endocytosis and signal transduction, which are inexplicably deregulated and are associated with aggressiveness in numerous cancers. Here we identify CAV1 as a direct transcriptional target of oxygen-labile hypoxia-inducible factor 1 and 2 that accentuates the formation of caveolae, leading to increased dimerization of EGF receptor within the confined surface area of caveolae and its subsequent phosphorylation in the absence of ligand. Hypoxia-inducible factor–dependent up-regulation of CAV1 enhanced the oncogenic potential of tumor cells by increasing the cell proliferative, migratory, and invasive capacities. These results support a concept in which a crisis in oxygen availability or a tumor exhibiting hypoxic signature triggers caveolae formation that bypasses the requirement for ligand engagement to initiate receptor activation and the critical downstream adaptive signaling during a period when ligands required to activate these receptors are limited or are not yet available.
doi_str_mv 10.1073/pnas.1112129109
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1539453936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41588392</jstor_id><sourcerecordid>41588392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c588t-3b82021f8dbde999ad587774b55c5671d9e2679800e98a2e04c3cedec9fe97893</originalsourceid><addsrcrecordid>eNp9kstu1DAUhiNERYfCmhUQsYFNWl8Tn00lVPUmVWIBXVse5yT1KBMHOxnRBRLvwBvyJDjMMAUWLHy8ON__69yy7AUlx5RU_GToTTymlDLKgBJ4lC1SpEUpgDzOFoSwqlCCicPsaYwrQghIRZ5kh4wJSisQi-zr1f3gvziTD8Gv_Ygx71xr-rpwfY0DptCP-fnlRR7Q4jD6kEfX9qZzfZtvkuxuK5_xybplh3ljbMJ-fPu-xtqZEet8GgK2U2dG5_vcN7k1G_TJoaDPsoPGdBGf7_6j7Pbi_NPZVXHz4fL67P1NYaVSY8GXihFGG1UvawQAU0tVVZVYSmllWdEakJUVKEIQlGFIhOUWa7TQIFQK-FF2uvUdpmUqy6amgun0ENzahHvtjdN_Z3p3p1u_0ZwznhySwdudQfCfJ4yjXrtosetMj36KGiRQIdOoE_nuvySVHER6vEzom3_QlZ9CGu7sJ0peAp1LP9lCNvgYAzb7qinR8w3o-Qb0ww0kxas_m93zv5eegNc7YFY-2IGmXAsFcxMvt8Qqpl3uEUHTOviv_M6hMV6bNriobz8yQkU6sRKk5Pwn0-nN3g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>954636919</pqid></control><display><type>article</type><title>Hypoxia promotes ligand-independent EGF receptor signaling via hypoxia-inducible factor–mediated upregulation of caveolin-1</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Wang, Yi ; Roche, Olga ; Xu, Chaoying ; Moriyama, Eduardo H ; Heir, Pardeep ; Chung, Jacky ; Roos, Frederik C ; Chen, Yonghong ; Finak, Greg ; Milosevic, Michael ; Wilson, Brian C ; Teh, Bin Tean ; Park, Morag ; Irwin, Meredith S ; Ohh, Michael</creator><creatorcontrib>Wang, Yi ; Roche, Olga ; Xu, Chaoying ; Moriyama, Eduardo H ; Heir, Pardeep ; Chung, Jacky ; Roos, Frederik C ; Chen, Yonghong ; Finak, Greg ; Milosevic, Michael ; Wilson, Brian C ; Teh, Bin Tean ; Park, Morag ; Irwin, Meredith S ; Ohh, Michael</creatorcontrib><description>Caveolin-1 (CAV1) is an essential structural constituent of caveolae, specialized lipid raft microdomains on the cell membrane involved in endocytosis and signal transduction, which are inexplicably deregulated and are associated with aggressiveness in numerous cancers. Here we identify CAV1 as a direct transcriptional target of oxygen-labile hypoxia-inducible factor 1 and 2 that accentuates the formation of caveolae, leading to increased dimerization of EGF receptor within the confined surface area of caveolae and its subsequent phosphorylation in the absence of ligand. Hypoxia-inducible factor–dependent up-regulation of CAV1 enhanced the oncogenic potential of tumor cells by increasing the cell proliferative, migratory, and invasive capacities. These results support a concept in which a crisis in oxygen availability or a tumor exhibiting hypoxic signature triggers caveolae formation that bypasses the requirement for ligand engagement to initiate receptor activation and the critical downstream adaptive signaling during a period when ligands required to activate these receptors are limited or are not yet available.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1112129109</identifier><identifier>PMID: 22411794</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Base Sequence ; Basic Helix-Loop-Helix Transcription Factors ; Basic Helix-Loop-Helix Transcription Factors - metabolism ; Biological Sciences ; Cancer ; Caveolae ; Caveolae - metabolism ; Caveolae - ultrastructure ; Caveolin 1 ; Caveolin 1 - metabolism ; Cell growth ; Cell Hypoxia ; Cell Line, Tumor ; cell membranes ; Cell Proliferation ; Conserved Sequence ; Conserved Sequence - genetics ; dimerization ; ErbB Receptors ; Gene expression regulation ; genetics ; HeLa cells ; Humans ; Hypoxia ; Hypoxia-Inducible Factor 1 ; Hypoxia-Inducible Factor 1 - metabolism ; Ligands ; MAP Kinase Signaling System ; metabolism ; Molecular Sequence Data ; neoplasms ; Oxygen ; Phosphorylation ; Protein Binding ; Receptor, Epidermal Growth Factor - metabolism ; Receptors ; Renal cell carcinoma ; Response Elements ; Response Elements - genetics ; RNA Polymerase II ; RNA Polymerase II - metabolism ; Signal Transduction ; surface area ; Transcription, Genetic ; Tumors ; ultrastructure ; Up-Regulation ; Von Hippel-Lindau Tumor Suppressor Protein ; Von Hippel-Lindau Tumor Suppressor Protein - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-03, Vol.109 (13), p.4892-4897</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Mar 27, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c588t-3b82021f8dbde999ad587774b55c5671d9e2679800e98a2e04c3cedec9fe97893</citedby><cites>FETCH-LOGICAL-c588t-3b82021f8dbde999ad587774b55c5671d9e2679800e98a2e04c3cedec9fe97893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/13.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41588392$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41588392$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22411794$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Roche, Olga</creatorcontrib><creatorcontrib>Xu, Chaoying</creatorcontrib><creatorcontrib>Moriyama, Eduardo H</creatorcontrib><creatorcontrib>Heir, Pardeep</creatorcontrib><creatorcontrib>Chung, Jacky</creatorcontrib><creatorcontrib>Roos, Frederik C</creatorcontrib><creatorcontrib>Chen, Yonghong</creatorcontrib><creatorcontrib>Finak, Greg</creatorcontrib><creatorcontrib>Milosevic, Michael</creatorcontrib><creatorcontrib>Wilson, Brian C</creatorcontrib><creatorcontrib>Teh, Bin Tean</creatorcontrib><creatorcontrib>Park, Morag</creatorcontrib><creatorcontrib>Irwin, Meredith S</creatorcontrib><creatorcontrib>Ohh, Michael</creatorcontrib><title>Hypoxia promotes ligand-independent EGF receptor signaling via hypoxia-inducible factor–mediated upregulation of caveolin-1</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Caveolin-1 (CAV1) is an essential structural constituent of caveolae, specialized lipid raft microdomains on the cell membrane involved in endocytosis and signal transduction, which are inexplicably deregulated and are associated with aggressiveness in numerous cancers. Here we identify CAV1 as a direct transcriptional target of oxygen-labile hypoxia-inducible factor 1 and 2 that accentuates the formation of caveolae, leading to increased dimerization of EGF receptor within the confined surface area of caveolae and its subsequent phosphorylation in the absence of ligand. Hypoxia-inducible factor–dependent up-regulation of CAV1 enhanced the oncogenic potential of tumor cells by increasing the cell proliferative, migratory, and invasive capacities. These results support a concept in which a crisis in oxygen availability or a tumor exhibiting hypoxic signature triggers caveolae formation that bypasses the requirement for ligand engagement to initiate receptor activation and the critical downstream adaptive signaling during a period when ligands required to activate these receptors are limited or are not yet available.</description><subject>Base Sequence</subject><subject>Basic Helix-Loop-Helix Transcription Factors</subject><subject>Basic Helix-Loop-Helix Transcription Factors - metabolism</subject><subject>Biological Sciences</subject><subject>Cancer</subject><subject>Caveolae</subject><subject>Caveolae - metabolism</subject><subject>Caveolae - ultrastructure</subject><subject>Caveolin 1</subject><subject>Caveolin 1 - metabolism</subject><subject>Cell growth</subject><subject>Cell Hypoxia</subject><subject>Cell Line, Tumor</subject><subject>cell membranes</subject><subject>Cell Proliferation</subject><subject>Conserved Sequence</subject><subject>Conserved Sequence - genetics</subject><subject>dimerization</subject><subject>ErbB Receptors</subject><subject>Gene expression regulation</subject><subject>genetics</subject><subject>HeLa cells</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>Hypoxia-Inducible Factor 1</subject><subject>Hypoxia-Inducible Factor 1 - metabolism</subject><subject>Ligands</subject><subject>MAP Kinase Signaling System</subject><subject>metabolism</subject><subject>Molecular Sequence Data</subject><subject>neoplasms</subject><subject>Oxygen</subject><subject>Phosphorylation</subject><subject>Protein Binding</subject><subject>Receptor, Epidermal Growth Factor - metabolism</subject><subject>Receptors</subject><subject>Renal cell carcinoma</subject><subject>Response Elements</subject><subject>Response Elements - genetics</subject><subject>RNA Polymerase II</subject><subject>RNA Polymerase II - metabolism</subject><subject>Signal Transduction</subject><subject>surface area</subject><subject>Transcription, Genetic</subject><subject>Tumors</subject><subject>ultrastructure</subject><subject>Up-Regulation</subject><subject>Von Hippel-Lindau Tumor Suppressor Protein</subject><subject>Von Hippel-Lindau Tumor Suppressor Protein - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kstu1DAUhiNERYfCmhUQsYFNWl8Tn00lVPUmVWIBXVse5yT1KBMHOxnRBRLvwBvyJDjMMAUWLHy8ON__69yy7AUlx5RU_GToTTymlDLKgBJ4lC1SpEUpgDzOFoSwqlCCicPsaYwrQghIRZ5kh4wJSisQi-zr1f3gvziTD8Gv_Ygx71xr-rpwfY0DptCP-fnlRR7Q4jD6kEfX9qZzfZtvkuxuK5_xybplh3ljbMJ-fPu-xtqZEet8GgK2U2dG5_vcN7k1G_TJoaDPsoPGdBGf7_6j7Pbi_NPZVXHz4fL67P1NYaVSY8GXihFGG1UvawQAU0tVVZVYSmllWdEakJUVKEIQlGFIhOUWa7TQIFQK-FF2uvUdpmUqy6amgun0ENzahHvtjdN_Z3p3p1u_0ZwznhySwdudQfCfJ4yjXrtosetMj36KGiRQIdOoE_nuvySVHER6vEzom3_QlZ9CGu7sJ0peAp1LP9lCNvgYAzb7qinR8w3o-Qb0ww0kxas_m93zv5eegNc7YFY-2IGmXAsFcxMvt8Qqpl3uEUHTOviv_M6hMV6bNriobz8yQkU6sRKk5Pwn0-nN3g</recordid><startdate>20120327</startdate><enddate>20120327</enddate><creator>Wang, Yi</creator><creator>Roche, Olga</creator><creator>Xu, Chaoying</creator><creator>Moriyama, Eduardo H</creator><creator>Heir, Pardeep</creator><creator>Chung, Jacky</creator><creator>Roos, Frederik C</creator><creator>Chen, Yonghong</creator><creator>Finak, Greg</creator><creator>Milosevic, Michael</creator><creator>Wilson, Brian C</creator><creator>Teh, Bin Tean</creator><creator>Park, Morag</creator><creator>Irwin, Meredith S</creator><creator>Ohh, Michael</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120327</creationdate><title>Hypoxia promotes ligand-independent EGF receptor signaling via hypoxia-inducible factor–mediated upregulation of caveolin-1</title><author>Wang, Yi ; Roche, Olga ; Xu, Chaoying ; Moriyama, Eduardo H ; Heir, Pardeep ; Chung, Jacky ; Roos, Frederik C ; Chen, Yonghong ; Finak, Greg ; Milosevic, Michael ; Wilson, Brian C ; Teh, Bin Tean ; Park, Morag ; Irwin, Meredith S ; Ohh, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c588t-3b82021f8dbde999ad587774b55c5671d9e2679800e98a2e04c3cedec9fe97893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Base Sequence</topic><topic>Basic Helix-Loop-Helix Transcription Factors</topic><topic>Basic Helix-Loop-Helix Transcription Factors - metabolism</topic><topic>Biological Sciences</topic><topic>Cancer</topic><topic>Caveolae</topic><topic>Caveolae - metabolism</topic><topic>Caveolae - ultrastructure</topic><topic>Caveolin 1</topic><topic>Caveolin 1 - metabolism</topic><topic>Cell growth</topic><topic>Cell Hypoxia</topic><topic>Cell Line, Tumor</topic><topic>cell membranes</topic><topic>Cell Proliferation</topic><topic>Conserved Sequence</topic><topic>Conserved Sequence - genetics</topic><topic>dimerization</topic><topic>ErbB Receptors</topic><topic>Gene expression regulation</topic><topic>genetics</topic><topic>HeLa cells</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>Hypoxia-Inducible Factor 1</topic><topic>Hypoxia-Inducible Factor 1 - metabolism</topic><topic>Ligands</topic><topic>MAP Kinase Signaling System</topic><topic>metabolism</topic><topic>Molecular Sequence Data</topic><topic>neoplasms</topic><topic>Oxygen</topic><topic>Phosphorylation</topic><topic>Protein Binding</topic><topic>Receptor, Epidermal Growth Factor - metabolism</topic><topic>Receptors</topic><topic>Renal cell carcinoma</topic><topic>Response Elements</topic><topic>Response Elements - genetics</topic><topic>RNA Polymerase II</topic><topic>RNA Polymerase II - metabolism</topic><topic>Signal Transduction</topic><topic>surface area</topic><topic>Transcription, Genetic</topic><topic>Tumors</topic><topic>ultrastructure</topic><topic>Up-Regulation</topic><topic>Von Hippel-Lindau Tumor Suppressor Protein</topic><topic>Von Hippel-Lindau Tumor Suppressor Protein - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Roche, Olga</creatorcontrib><creatorcontrib>Xu, Chaoying</creatorcontrib><creatorcontrib>Moriyama, Eduardo H</creatorcontrib><creatorcontrib>Heir, Pardeep</creatorcontrib><creatorcontrib>Chung, Jacky</creatorcontrib><creatorcontrib>Roos, Frederik C</creatorcontrib><creatorcontrib>Chen, Yonghong</creatorcontrib><creatorcontrib>Finak, Greg</creatorcontrib><creatorcontrib>Milosevic, Michael</creatorcontrib><creatorcontrib>Wilson, Brian C</creatorcontrib><creatorcontrib>Teh, Bin Tean</creatorcontrib><creatorcontrib>Park, Morag</creatorcontrib><creatorcontrib>Irwin, Meredith S</creatorcontrib><creatorcontrib>Ohh, Michael</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yi</au><au>Roche, Olga</au><au>Xu, Chaoying</au><au>Moriyama, Eduardo H</au><au>Heir, Pardeep</au><au>Chung, Jacky</au><au>Roos, Frederik C</au><au>Chen, Yonghong</au><au>Finak, Greg</au><au>Milosevic, Michael</au><au>Wilson, Brian C</au><au>Teh, Bin Tean</au><au>Park, Morag</au><au>Irwin, Meredith S</au><au>Ohh, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hypoxia promotes ligand-independent EGF receptor signaling via hypoxia-inducible factor–mediated upregulation of caveolin-1</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2012-03-27</date><risdate>2012</risdate><volume>109</volume><issue>13</issue><spage>4892</spage><epage>4897</epage><pages>4892-4897</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Caveolin-1 (CAV1) is an essential structural constituent of caveolae, specialized lipid raft microdomains on the cell membrane involved in endocytosis and signal transduction, which are inexplicably deregulated and are associated with aggressiveness in numerous cancers. Here we identify CAV1 as a direct transcriptional target of oxygen-labile hypoxia-inducible factor 1 and 2 that accentuates the formation of caveolae, leading to increased dimerization of EGF receptor within the confined surface area of caveolae and its subsequent phosphorylation in the absence of ligand. Hypoxia-inducible factor–dependent up-regulation of CAV1 enhanced the oncogenic potential of tumor cells by increasing the cell proliferative, migratory, and invasive capacities. These results support a concept in which a crisis in oxygen availability or a tumor exhibiting hypoxic signature triggers caveolae formation that bypasses the requirement for ligand engagement to initiate receptor activation and the critical downstream adaptive signaling during a period when ligands required to activate these receptors are limited or are not yet available.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>22411794</pmid><doi>10.1073/pnas.1112129109</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2012-03, Vol.109 (13), p.4892-4897
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_1539453936
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Base Sequence
Basic Helix-Loop-Helix Transcription Factors
Basic Helix-Loop-Helix Transcription Factors - metabolism
Biological Sciences
Cancer
Caveolae
Caveolae - metabolism
Caveolae - ultrastructure
Caveolin 1
Caveolin 1 - metabolism
Cell growth
Cell Hypoxia
Cell Line, Tumor
cell membranes
Cell Proliferation
Conserved Sequence
Conserved Sequence - genetics
dimerization
ErbB Receptors
Gene expression regulation
genetics
HeLa cells
Humans
Hypoxia
Hypoxia-Inducible Factor 1
Hypoxia-Inducible Factor 1 - metabolism
Ligands
MAP Kinase Signaling System
metabolism
Molecular Sequence Data
neoplasms
Oxygen
Phosphorylation
Protein Binding
Receptor, Epidermal Growth Factor - metabolism
Receptors
Renal cell carcinoma
Response Elements
Response Elements - genetics
RNA Polymerase II
RNA Polymerase II - metabolism
Signal Transduction
surface area
Transcription, Genetic
Tumors
ultrastructure
Up-Regulation
Von Hippel-Lindau Tumor Suppressor Protein
Von Hippel-Lindau Tumor Suppressor Protein - metabolism
title Hypoxia promotes ligand-independent EGF receptor signaling via hypoxia-inducible factor–mediated upregulation of caveolin-1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T20%3A54%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hypoxia%20promotes%20ligand-independent%20EGF%20receptor%20signaling%20via%20hypoxia-inducible%20factor%E2%80%93mediated%20upregulation%20of%20caveolin-1&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Wang,%20Yi&rft.date=2012-03-27&rft.volume=109&rft.issue=13&rft.spage=4892&rft.epage=4897&rft.pages=4892-4897&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1112129109&rft_dat=%3Cjstor_proqu%3E41588392%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=954636919&rft_id=info:pmid/22411794&rft_jstor_id=41588392&rfr_iscdi=true