Electropolymerized Carbonic Anhydrase Immobilization for Carbon Dioxide Capture

Biomimetic carbonation carried out with carbonic anhydrase (CA) in CO2-absorbing solutions, such as methyldiethanolamine (MDEA), is one approach that has been developed to accelerate the capture of CO2. However, there are several practical issues, such as high cost and limited enzyme stability, that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2014-06, Vol.30 (23), p.6915-6919
Hauptverfasser: Merle, Geraldine, Fradette, Sylvie, Madore, Eric, Barralet, Jake E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6919
container_issue 23
container_start_page 6915
container_title Langmuir
container_volume 30
creator Merle, Geraldine
Fradette, Sylvie
Madore, Eric
Barralet, Jake E
description Biomimetic carbonation carried out with carbonic anhydrase (CA) in CO2-absorbing solutions, such as methyldiethanolamine (MDEA), is one approach that has been developed to accelerate the capture of CO2. However, there are several practical issues, such as high cost and limited enzyme stability, that need to be overcome. In this study, the capacity of CA immobilization on a porous solid support was studied to improve the instability in the tertiary amine solvent. We have shown that a 63% porosity macroporous carbon foam support makes separation and reuse facile and allows for an efficient supply and presentation of CO2 to an aqueous solvent and the enzyme catalytic center. These enzymatic supports conserved 40% of their initial activity after 42 days at 70 °C in an amine solvent, whereas the free enzyme shows no activity after 1 h in the same conditions. In this work, we have overcome the technical barrier associated with the recovery of the biocatalyst after operation, and most of all, these electropolymerized enzymatic supports have shown a remarkable increase of thermal stability in an amine-based CO2 sequestration solvent.
doi_str_mv 10.1021/la501333s
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1537177479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1537177479</sourcerecordid><originalsourceid>FETCH-LOGICAL-a381t-575bf52ce275ea18cb55da29fb628f9181a47a6822dc19eaeb3ccee8273c78823</originalsourceid><addsrcrecordid>eNpt0E9LwzAYBvAgipvTg19AehH0UM2fpkmPY04dDHbRc0jTt5iRNjVpwe3TW9n05OnlhR8PPA9C1wQ_EEzJo9McE8ZYPEFTwilOuaTiFE2xyFgqspxN0EWMW4xxwbLiHE1oJnkuJJ6izdKB6YPvvNs1EOweqmShQ-lba5J5-7Grgo6QrJrGl9bZve6tb5Pah6NKnqz_shWMb9cPAS7RWa1dhKvjnaH35-Xb4jVdb15Wi_k61UySPuWClzWnBqjgoIk0JeeVpkVd5lTWBZFEZ0LnktLKkAI0lMwYgLEWM0JKymbo7pDbBf85QOxVY6MB53QLfoiKcCaIEJkoRnp_oCb4GAPUqgu20WGnCFY_-6m__UZ7c4wdygaqP_k72AhuD0CbqLZ-CO3Y8p-gb0lcd5M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1537177479</pqid></control><display><type>article</type><title>Electropolymerized Carbonic Anhydrase Immobilization for Carbon Dioxide Capture</title><source>ACS Publications</source><source>MEDLINE</source><creator>Merle, Geraldine ; Fradette, Sylvie ; Madore, Eric ; Barralet, Jake E</creator><creatorcontrib>Merle, Geraldine ; Fradette, Sylvie ; Madore, Eric ; Barralet, Jake E</creatorcontrib><description>Biomimetic carbonation carried out with carbonic anhydrase (CA) in CO2-absorbing solutions, such as methyldiethanolamine (MDEA), is one approach that has been developed to accelerate the capture of CO2. However, there are several practical issues, such as high cost and limited enzyme stability, that need to be overcome. In this study, the capacity of CA immobilization on a porous solid support was studied to improve the instability in the tertiary amine solvent. We have shown that a 63% porosity macroporous carbon foam support makes separation and reuse facile and allows for an efficient supply and presentation of CO2 to an aqueous solvent and the enzyme catalytic center. These enzymatic supports conserved 40% of their initial activity after 42 days at 70 °C in an amine solvent, whereas the free enzyme shows no activity after 1 h in the same conditions. In this work, we have overcome the technical barrier associated with the recovery of the biocatalyst after operation, and most of all, these electropolymerized enzymatic supports have shown a remarkable increase of thermal stability in an amine-based CO2 sequestration solvent.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la501333s</identifier><identifier>PMID: 24856780</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Carbon Dioxide - chemistry ; Carbonic Anhydrases - chemistry ; Carbonic Anhydrases - metabolism ; Enzymes, Immobilized - chemistry ; Ethanolamines - chemistry</subject><ispartof>Langmuir, 2014-06, Vol.30 (23), p.6915-6919</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a381t-575bf52ce275ea18cb55da29fb628f9181a47a6822dc19eaeb3ccee8273c78823</citedby><cites>FETCH-LOGICAL-a381t-575bf52ce275ea18cb55da29fb628f9181a47a6822dc19eaeb3ccee8273c78823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la501333s$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la501333s$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24856780$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Merle, Geraldine</creatorcontrib><creatorcontrib>Fradette, Sylvie</creatorcontrib><creatorcontrib>Madore, Eric</creatorcontrib><creatorcontrib>Barralet, Jake E</creatorcontrib><title>Electropolymerized Carbonic Anhydrase Immobilization for Carbon Dioxide Capture</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Biomimetic carbonation carried out with carbonic anhydrase (CA) in CO2-absorbing solutions, such as methyldiethanolamine (MDEA), is one approach that has been developed to accelerate the capture of CO2. However, there are several practical issues, such as high cost and limited enzyme stability, that need to be overcome. In this study, the capacity of CA immobilization on a porous solid support was studied to improve the instability in the tertiary amine solvent. We have shown that a 63% porosity macroporous carbon foam support makes separation and reuse facile and allows for an efficient supply and presentation of CO2 to an aqueous solvent and the enzyme catalytic center. These enzymatic supports conserved 40% of their initial activity after 42 days at 70 °C in an amine solvent, whereas the free enzyme shows no activity after 1 h in the same conditions. In this work, we have overcome the technical barrier associated with the recovery of the biocatalyst after operation, and most of all, these electropolymerized enzymatic supports have shown a remarkable increase of thermal stability in an amine-based CO2 sequestration solvent.</description><subject>Carbon Dioxide - chemistry</subject><subject>Carbonic Anhydrases - chemistry</subject><subject>Carbonic Anhydrases - metabolism</subject><subject>Enzymes, Immobilized - chemistry</subject><subject>Ethanolamines - chemistry</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0E9LwzAYBvAgipvTg19AehH0UM2fpkmPY04dDHbRc0jTt5iRNjVpwe3TW9n05OnlhR8PPA9C1wQ_EEzJo9McE8ZYPEFTwilOuaTiFE2xyFgqspxN0EWMW4xxwbLiHE1oJnkuJJ6izdKB6YPvvNs1EOweqmShQ-lba5J5-7Grgo6QrJrGl9bZve6tb5Pah6NKnqz_shWMb9cPAS7RWa1dhKvjnaH35-Xb4jVdb15Wi_k61UySPuWClzWnBqjgoIk0JeeVpkVd5lTWBZFEZ0LnktLKkAI0lMwYgLEWM0JKymbo7pDbBf85QOxVY6MB53QLfoiKcCaIEJkoRnp_oCb4GAPUqgu20WGnCFY_-6m__UZ7c4wdygaqP_k72AhuD0CbqLZ-CO3Y8p-gb0lcd5M</recordid><startdate>20140617</startdate><enddate>20140617</enddate><creator>Merle, Geraldine</creator><creator>Fradette, Sylvie</creator><creator>Madore, Eric</creator><creator>Barralet, Jake E</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20140617</creationdate><title>Electropolymerized Carbonic Anhydrase Immobilization for Carbon Dioxide Capture</title><author>Merle, Geraldine ; Fradette, Sylvie ; Madore, Eric ; Barralet, Jake E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a381t-575bf52ce275ea18cb55da29fb628f9181a47a6822dc19eaeb3ccee8273c78823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Carbon Dioxide - chemistry</topic><topic>Carbonic Anhydrases - chemistry</topic><topic>Carbonic Anhydrases - metabolism</topic><topic>Enzymes, Immobilized - chemistry</topic><topic>Ethanolamines - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Merle, Geraldine</creatorcontrib><creatorcontrib>Fradette, Sylvie</creatorcontrib><creatorcontrib>Madore, Eric</creatorcontrib><creatorcontrib>Barralet, Jake E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Merle, Geraldine</au><au>Fradette, Sylvie</au><au>Madore, Eric</au><au>Barralet, Jake E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electropolymerized Carbonic Anhydrase Immobilization for Carbon Dioxide Capture</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2014-06-17</date><risdate>2014</risdate><volume>30</volume><issue>23</issue><spage>6915</spage><epage>6919</epage><pages>6915-6919</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>Biomimetic carbonation carried out with carbonic anhydrase (CA) in CO2-absorbing solutions, such as methyldiethanolamine (MDEA), is one approach that has been developed to accelerate the capture of CO2. However, there are several practical issues, such as high cost and limited enzyme stability, that need to be overcome. In this study, the capacity of CA immobilization on a porous solid support was studied to improve the instability in the tertiary amine solvent. We have shown that a 63% porosity macroporous carbon foam support makes separation and reuse facile and allows for an efficient supply and presentation of CO2 to an aqueous solvent and the enzyme catalytic center. These enzymatic supports conserved 40% of their initial activity after 42 days at 70 °C in an amine solvent, whereas the free enzyme shows no activity after 1 h in the same conditions. In this work, we have overcome the technical barrier associated with the recovery of the biocatalyst after operation, and most of all, these electropolymerized enzymatic supports have shown a remarkable increase of thermal stability in an amine-based CO2 sequestration solvent.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24856780</pmid><doi>10.1021/la501333s</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2014-06, Vol.30 (23), p.6915-6919
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_1537177479
source ACS Publications; MEDLINE
subjects Carbon Dioxide - chemistry
Carbonic Anhydrases - chemistry
Carbonic Anhydrases - metabolism
Enzymes, Immobilized - chemistry
Ethanolamines - chemistry
title Electropolymerized Carbonic Anhydrase Immobilization for Carbon Dioxide Capture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T14%3A42%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electropolymerized%20Carbonic%20Anhydrase%20Immobilization%20for%20Carbon%20Dioxide%20Capture&rft.jtitle=Langmuir&rft.au=Merle,%20Geraldine&rft.date=2014-06-17&rft.volume=30&rft.issue=23&rft.spage=6915&rft.epage=6919&rft.pages=6915-6919&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/la501333s&rft_dat=%3Cproquest_cross%3E1537177479%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1537177479&rft_id=info:pmid/24856780&rfr_iscdi=true