Selection of biochemical characters in the breeding for pest and disease resistance: a method based on analogy analysis of chromatographic separation patterns for emitted plant substances

Chromatographic separation patterns of emitted substances are proposed to be used as fingerprints of the defence chemistry in plants. The goal is to recognize the patterns of resistance agents in the chromatograms and to use these patterns for guidance in resistance breeding. This can be done by com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hereditas 1981-01, Vol.95 (2), p.173-179
Hauptverfasser: LUNDGREN, L., NORELIUS, G., STENHAGEN, G.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 179
container_issue 2
container_start_page 173
container_title Hereditas
container_volume 95
creator LUNDGREN, L.
NORELIUS, G.
STENHAGEN, G.
description Chromatographic separation patterns of emitted substances are proposed to be used as fingerprints of the defence chemistry in plants. The goal is to recognize the patterns of resistance agents in the chromatograms and to use these patterns for guidance in resistance breeding. This can be done by comparing a reference set of resistant plants with a reference set of nonresistant plants. One problem is the great number of data. A capillary gas chromatogram from a wounded leaf, e.g., may contain more than a hundred component peaks. Such multidimensional comparisons can only be made by a computer. The literature has been searched for computer programs suited for this purpose. The Statistical Isolinear Multiple Component Analysis method (SIMCA) is found to be best suited. It is theoretically estimated that the processing of chromatographic data by the SIMCA‐method can enable the resistance breeder to classify unknown plants as resistant or nonresistant; to discern nonrelevant peaks in the chromatograms; to grade the importance of the resistance variables; and to predict the optimal levels for the different resistance agents. The results indicate that capillary gas chromatography and high pressure liquid chromatography can be adapted to handle the great number of samples needed in a breeding program. These methods together cover the molecular range of importance for resistance.
doi_str_mv 10.1111/j.1601-5223.1981.tb01405.x
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_15368150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>15368150</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4125-f6e65d263fcc6a8b72209284bf6b610dfa64c20761377f802068e7f51e7dfed93</originalsourceid><addsrcrecordid>eNqVUcGO0zAQjRBIlIVfQBYHbsnaTuykewKVpUVaQNqCOFqOPW5c0jjYrmi_jZ9bp1ntHV_Go3nz3sy8LHtHcEHSu94XhGOSM0rLgiwbUsQWkwqz4vQsWzyVnmcLjEmTY87Jy-xVCPuU1ktSLrJ_W-hBResG5AxqrVMdHKySPVKd9FJF8AHZAcUOUOsBtB12yDiPRggRyUEjbQPIAMhDsCHKQcENkugAsXMatamiUSKXg-zd7nyJ5wSc1FTn3UFGt_Ny7KxCAcYkeZlllDEpD-EilQZKmUZjL4eIwrGdZcLr7IWRfYA3j_Eq-_n59sdqk999X39ZfbzLVUUoyw0HzjTlpVGKy6atKcVL2lSt4S0nWBvJK0VxzUlZ16bBFPMGasMI1NqAXpZX2fuZd_TuzzHtLQ42KOjTOOCOQRBW8oYwnIA3M1B5F4IHI0ZvD9KfBcFi8kvsxWSKmEwRk1_i0S9xSs0f5ua_tofzf3SKzf0nOn0TRT5TJCPg9EQh_W_B67Jm4te3tVivGN7e069ik_BvZ7yRTsidt0FsbxN5OkbF0jnKB7Iouqo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15368150</pqid></control><display><type>article</type><title>Selection of biochemical characters in the breeding for pest and disease resistance: a method based on analogy analysis of chromatographic separation patterns for emitted plant substances</title><source>Wiley Online Library Open Access</source><creator>LUNDGREN, L. ; NORELIUS, G. ; STENHAGEN, G.</creator><creatorcontrib>LUNDGREN, L. ; NORELIUS, G. ; STENHAGEN, G. ; Goeteborg Univ. (Sweden). Avd. foer Ekologisk Kemi</creatorcontrib><description>Chromatographic separation patterns of emitted substances are proposed to be used as fingerprints of the defence chemistry in plants. The goal is to recognize the patterns of resistance agents in the chromatograms and to use these patterns for guidance in resistance breeding. This can be done by comparing a reference set of resistant plants with a reference set of nonresistant plants. One problem is the great number of data. A capillary gas chromatogram from a wounded leaf, e.g., may contain more than a hundred component peaks. Such multidimensional comparisons can only be made by a computer. The literature has been searched for computer programs suited for this purpose. The Statistical Isolinear Multiple Component Analysis method (SIMCA) is found to be best suited. It is theoretically estimated that the processing of chromatographic data by the SIMCA‐method can enable the resistance breeder to classify unknown plants as resistant or nonresistant; to discern nonrelevant peaks in the chromatograms; to grade the importance of the resistance variables; and to predict the optimal levels for the different resistance agents. The results indicate that capillary gas chromatography and high pressure liquid chromatography can be adapted to handle the great number of samples needed in a breeding program. These methods together cover the molecular range of importance for resistance.</description><identifier>ISSN: 0018-0661</identifier><identifier>EISSN: 1601-5223</identifier><identifier>DOI: 10.1111/j.1601-5223.1981.tb01405.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><ispartof>Hereditas, 1981-01, Vol.95 (2), p.173-179</ispartof><rights>1981 Mendelian Society of Lund</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4125-f6e65d263fcc6a8b72209284bf6b610dfa64c20761377f802068e7f51e7dfed93</citedby><cites>FETCH-LOGICAL-c4125-f6e65d263fcc6a8b72209284bf6b610dfa64c20761377f802068e7f51e7dfed93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1601-5223.1981.tb01405.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1601-5223.1981.tb01405.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,11542,27903,27904,45553,45554,46031,46455</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1601-5223.1981.tb01405.x$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>LUNDGREN, L.</creatorcontrib><creatorcontrib>NORELIUS, G.</creatorcontrib><creatorcontrib>STENHAGEN, G.</creatorcontrib><creatorcontrib>Goeteborg Univ. (Sweden). Avd. foer Ekologisk Kemi</creatorcontrib><title>Selection of biochemical characters in the breeding for pest and disease resistance: a method based on analogy analysis of chromatographic separation patterns for emitted plant substances</title><title>Hereditas</title><description>Chromatographic separation patterns of emitted substances are proposed to be used as fingerprints of the defence chemistry in plants. The goal is to recognize the patterns of resistance agents in the chromatograms and to use these patterns for guidance in resistance breeding. This can be done by comparing a reference set of resistant plants with a reference set of nonresistant plants. One problem is the great number of data. A capillary gas chromatogram from a wounded leaf, e.g., may contain more than a hundred component peaks. Such multidimensional comparisons can only be made by a computer. The literature has been searched for computer programs suited for this purpose. The Statistical Isolinear Multiple Component Analysis method (SIMCA) is found to be best suited. It is theoretically estimated that the processing of chromatographic data by the SIMCA‐method can enable the resistance breeder to classify unknown plants as resistant or nonresistant; to discern nonrelevant peaks in the chromatograms; to grade the importance of the resistance variables; and to predict the optimal levels for the different resistance agents. The results indicate that capillary gas chromatography and high pressure liquid chromatography can be adapted to handle the great number of samples needed in a breeding program. These methods together cover the molecular range of importance for resistance.</description><issn>0018-0661</issn><issn>1601-5223</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1981</creationdate><recordtype>article</recordtype><recordid>eNqVUcGO0zAQjRBIlIVfQBYHbsnaTuykewKVpUVaQNqCOFqOPW5c0jjYrmi_jZ9bp1ntHV_Go3nz3sy8LHtHcEHSu94XhGOSM0rLgiwbUsQWkwqz4vQsWzyVnmcLjEmTY87Jy-xVCPuU1ktSLrJ_W-hBResG5AxqrVMdHKySPVKd9FJF8AHZAcUOUOsBtB12yDiPRggRyUEjbQPIAMhDsCHKQcENkugAsXMatamiUSKXg-zd7nyJ5wSc1FTn3UFGt_Ny7KxCAcYkeZlllDEpD-EilQZKmUZjL4eIwrGdZcLr7IWRfYA3j_Eq-_n59sdqk999X39ZfbzLVUUoyw0HzjTlpVGKy6atKcVL2lSt4S0nWBvJK0VxzUlZ16bBFPMGasMI1NqAXpZX2fuZd_TuzzHtLQ42KOjTOOCOQRBW8oYwnIA3M1B5F4IHI0ZvD9KfBcFi8kvsxWSKmEwRk1_i0S9xSs0f5ua_tofzf3SKzf0nOn0TRT5TJCPg9EQh_W_B67Jm4te3tVivGN7e069ik_BvZ7yRTsidt0FsbxN5OkbF0jnKB7Iouqo</recordid><startdate>19810101</startdate><enddate>19810101</enddate><creator>LUNDGREN, L.</creator><creator>NORELIUS, G.</creator><creator>STENHAGEN, G.</creator><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>19810101</creationdate><title>Selection of biochemical characters in the breeding for pest and disease resistance: a method based on analogy analysis of chromatographic separation patterns for emitted plant substances</title><author>LUNDGREN, L. ; NORELIUS, G. ; STENHAGEN, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4125-f6e65d263fcc6a8b72209284bf6b610dfa64c20761377f802068e7f51e7dfed93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1981</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LUNDGREN, L.</creatorcontrib><creatorcontrib>NORELIUS, G.</creatorcontrib><creatorcontrib>STENHAGEN, G.</creatorcontrib><creatorcontrib>Goeteborg Univ. (Sweden). Avd. foer Ekologisk Kemi</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Hereditas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LUNDGREN, L.</au><au>NORELIUS, G.</au><au>STENHAGEN, G.</au><aucorp>Goeteborg Univ. (Sweden). Avd. foer Ekologisk Kemi</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selection of biochemical characters in the breeding for pest and disease resistance: a method based on analogy analysis of chromatographic separation patterns for emitted plant substances</atitle><jtitle>Hereditas</jtitle><date>1981-01-01</date><risdate>1981</risdate><volume>95</volume><issue>2</issue><spage>173</spage><epage>179</epage><pages>173-179</pages><issn>0018-0661</issn><eissn>1601-5223</eissn><abstract>Chromatographic separation patterns of emitted substances are proposed to be used as fingerprints of the defence chemistry in plants. The goal is to recognize the patterns of resistance agents in the chromatograms and to use these patterns for guidance in resistance breeding. This can be done by comparing a reference set of resistant plants with a reference set of nonresistant plants. One problem is the great number of data. A capillary gas chromatogram from a wounded leaf, e.g., may contain more than a hundred component peaks. Such multidimensional comparisons can only be made by a computer. The literature has been searched for computer programs suited for this purpose. The Statistical Isolinear Multiple Component Analysis method (SIMCA) is found to be best suited. It is theoretically estimated that the processing of chromatographic data by the SIMCA‐method can enable the resistance breeder to classify unknown plants as resistant or nonresistant; to discern nonrelevant peaks in the chromatograms; to grade the importance of the resistance variables; and to predict the optimal levels for the different resistance agents. The results indicate that capillary gas chromatography and high pressure liquid chromatography can be adapted to handle the great number of samples needed in a breeding program. These methods together cover the molecular range of importance for resistance.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1601-5223.1981.tb01405.x</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-0661
ispartof Hereditas, 1981-01, Vol.95 (2), p.173-179
issn 0018-0661
1601-5223
language eng
recordid cdi_proquest_miscellaneous_15368150
source Wiley Online Library Open Access
title Selection of biochemical characters in the breeding for pest and disease resistance: a method based on analogy analysis of chromatographic separation patterns for emitted plant substances
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T23%3A24%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selection%20of%20biochemical%20characters%20in%20the%20breeding%20for%20pest%20and%20disease%20resistance:%20a%20method%20based%20on%20analogy%20analysis%20of%20chromatographic%20separation%20patterns%20for%20emitted%20plant%20substances&rft.jtitle=Hereditas&rft.au=LUNDGREN,%20L.&rft.aucorp=Goeteborg%20Univ.%20(Sweden).%20Avd.%20foer%20Ekologisk%20Kemi&rft.date=1981-01-01&rft.volume=95&rft.issue=2&rft.spage=173&rft.epage=179&rft.pages=173-179&rft.issn=0018-0661&rft.eissn=1601-5223&rft_id=info:doi/10.1111/j.1601-5223.1981.tb01405.x&rft_dat=%3Cproquest_24P%3E15368150%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15368150&rft_id=info:pmid/&rfr_iscdi=true