Cation-Induced Band-Gap Tuning in Organohalide Perovskites: Interplay of Spin–Orbit Coupling and Octahedra Tilting

Organohalide lead perovskites have revolutionized the scenario of emerging photovoltaic technologies. The prototype MAPbI3 perovskite (MA = CH3NH3 +) has dominated the field, despite only harvesting photons above 750 nm (∼1.6 eV). Intensive research efforts are being devoted to find new perovskites...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2014-06, Vol.14 (6), p.3608-3616
Hauptverfasser: Amat, Anna, Mosconi, Edoardo, Ronca, Enrico, Quarti, Claudio, Umari, Paolo, Nazeeruddin, Md. K, Grätzel, Michael, De Angelis, Filippo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3616
container_issue 6
container_start_page 3608
container_title Nano letters
container_volume 14
creator Amat, Anna
Mosconi, Edoardo
Ronca, Enrico
Quarti, Claudio
Umari, Paolo
Nazeeruddin, Md. K
Grätzel, Michael
De Angelis, Filippo
description Organohalide lead perovskites have revolutionized the scenario of emerging photovoltaic technologies. The prototype MAPbI3 perovskite (MA = CH3NH3 +) has dominated the field, despite only harvesting photons above 750 nm (∼1.6 eV). Intensive research efforts are being devoted to find new perovskites with red-shifted absorption onset, along with good charge transport properties. Recently, a new perovskite based on the formamidinium cation ((NH2)2CH+ = FA) has shown potentially superior properties in terms of band gap and charge transport compared to MAPbI3. The results have been interpreted in terms of the cation size, with the larger FA cation expectedly delivering reduced band-gaps in Pb-based perovskites. To provide a full understanding of the interplay among size, structure, and organic/inorganic interactions in determining the properties of APbI3 perovskites, in view of designing new materials and fully exploiting them for solar cells applications, we report a fully first-principles investigation on APbI3 perovskites with A = Cs+, MA, and FA. Our results evidence that the tetragonal-to-quasi cubic structural evolution observed when moving from MA to FA is due to the interplay of size effects and enhanced hydrogen bonding between the FA cations and the inorganic matrix altering the covalent/ionic character of Pb–I bonds. Most notably, the observed cation-induced structural variability promotes markedly different electronic and optical properties in the MAPbI3 and FAPbI3 perovskites, mediated by the different spin–orbit coupling, leading to improved charge transport and red-shifted absorption in FAPbI3 and in general in pseudocubic structures. Our theoretical model constitutes the basis for the rationale design of new and more efficient organohalide perovskites for solar cells applications.
doi_str_mv 10.1021/nl5012992
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1535208206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1535208206</sourcerecordid><originalsourceid>FETCH-LOGICAL-a446t-3146e0508195cb7602726d827f807343aff25afad7fb1e576bc1eabe5f4960893</originalsourceid><addsrcrecordid>eNptkMFu1DAQhi1ERUvhwAsgX5DKIWXsxE7CDVZQVqq0SCznaOLYrYvXDrZTqTfegTfkSXDVZXvhNKPRN_-MPkJeMThnwNk77wQw3vf8CTlhooZKlv7poe-aY_I8pRsA6GsBz8gxb9q-rRt-QvIKsw2-WvtpUXqiH9FP1QXOdLt466-o9XQTr9CHa3R20vSrjuE2_bBZp_d07bOOs8M7Ggz9Nlv_59fvTRxtpquwzO5-v8TRjcp4raeIdGtdLtMX5MigS_rlvp6S758_bVdfqsvNxXr14bLCppG5qlkjNQjoWC_U2ErgLZdTx1vTQfm-RmO4QINTa0amRStHxTSOWpiml9D19Sk5e8idY_i56JSHnU1KO4dehyUNxY_g0HGQBX37gKoYUoraDHO0O4x3A4PhXvJwkFzY1_vYZdzp6UD-s1qAN3sAk0JnInpl0yPXSZBdLx45VGm4CUv0xcZ_Dv4FvTuQbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1535208206</pqid></control><display><type>article</type><title>Cation-Induced Band-Gap Tuning in Organohalide Perovskites: Interplay of Spin–Orbit Coupling and Octahedra Tilting</title><source>ACS Publications</source><creator>Amat, Anna ; Mosconi, Edoardo ; Ronca, Enrico ; Quarti, Claudio ; Umari, Paolo ; Nazeeruddin, Md. K ; Grätzel, Michael ; De Angelis, Filippo</creator><creatorcontrib>Amat, Anna ; Mosconi, Edoardo ; Ronca, Enrico ; Quarti, Claudio ; Umari, Paolo ; Nazeeruddin, Md. K ; Grätzel, Michael ; De Angelis, Filippo</creatorcontrib><description>Organohalide lead perovskites have revolutionized the scenario of emerging photovoltaic technologies. The prototype MAPbI3 perovskite (MA = CH3NH3 +) has dominated the field, despite only harvesting photons above 750 nm (∼1.6 eV). Intensive research efforts are being devoted to find new perovskites with red-shifted absorption onset, along with good charge transport properties. Recently, a new perovskite based on the formamidinium cation ((NH2)2CH+ = FA) has shown potentially superior properties in terms of band gap and charge transport compared to MAPbI3. The results have been interpreted in terms of the cation size, with the larger FA cation expectedly delivering reduced band-gaps in Pb-based perovskites. To provide a full understanding of the interplay among size, structure, and organic/inorganic interactions in determining the properties of APbI3 perovskites, in view of designing new materials and fully exploiting them for solar cells applications, we report a fully first-principles investigation on APbI3 perovskites with A = Cs+, MA, and FA. Our results evidence that the tetragonal-to-quasi cubic structural evolution observed when moving from MA to FA is due to the interplay of size effects and enhanced hydrogen bonding between the FA cations and the inorganic matrix altering the covalent/ionic character of Pb–I bonds. Most notably, the observed cation-induced structural variability promotes markedly different electronic and optical properties in the MAPbI3 and FAPbI3 perovskites, mediated by the different spin–orbit coupling, leading to improved charge transport and red-shifted absorption in FAPbI3 and in general in pseudocubic structures. Our theoretical model constitutes the basis for the rationale design of new and more efficient organohalide perovskites for solar cells applications.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl5012992</identifier><identifier>PMID: 24797342</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronic transport in multilayers, nanoscale materials and structures ; Electronics ; Energy ; Exact sciences and technology ; Molecular electronics, nanoelectronics ; Natural energy ; Photovoltaic conversion ; Physics ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Solar cells. Photoelectrochemical cells ; Solar energy</subject><ispartof>Nano letters, 2014-06, Vol.14 (6), p.3608-3616</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a446t-3146e0508195cb7602726d827f807343aff25afad7fb1e576bc1eabe5f4960893</citedby><cites>FETCH-LOGICAL-a446t-3146e0508195cb7602726d827f807343aff25afad7fb1e576bc1eabe5f4960893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl5012992$$EPDF$$P50$$Gacs$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl5012992$$EHTML$$P50$$Gacs$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28606895$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24797342$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Amat, Anna</creatorcontrib><creatorcontrib>Mosconi, Edoardo</creatorcontrib><creatorcontrib>Ronca, Enrico</creatorcontrib><creatorcontrib>Quarti, Claudio</creatorcontrib><creatorcontrib>Umari, Paolo</creatorcontrib><creatorcontrib>Nazeeruddin, Md. K</creatorcontrib><creatorcontrib>Grätzel, Michael</creatorcontrib><creatorcontrib>De Angelis, Filippo</creatorcontrib><title>Cation-Induced Band-Gap Tuning in Organohalide Perovskites: Interplay of Spin–Orbit Coupling and Octahedra Tilting</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Organohalide lead perovskites have revolutionized the scenario of emerging photovoltaic technologies. The prototype MAPbI3 perovskite (MA = CH3NH3 +) has dominated the field, despite only harvesting photons above 750 nm (∼1.6 eV). Intensive research efforts are being devoted to find new perovskites with red-shifted absorption onset, along with good charge transport properties. Recently, a new perovskite based on the formamidinium cation ((NH2)2CH+ = FA) has shown potentially superior properties in terms of band gap and charge transport compared to MAPbI3. The results have been interpreted in terms of the cation size, with the larger FA cation expectedly delivering reduced band-gaps in Pb-based perovskites. To provide a full understanding of the interplay among size, structure, and organic/inorganic interactions in determining the properties of APbI3 perovskites, in view of designing new materials and fully exploiting them for solar cells applications, we report a fully first-principles investigation on APbI3 perovskites with A = Cs+, MA, and FA. Our results evidence that the tetragonal-to-quasi cubic structural evolution observed when moving from MA to FA is due to the interplay of size effects and enhanced hydrogen bonding between the FA cations and the inorganic matrix altering the covalent/ionic character of Pb–I bonds. Most notably, the observed cation-induced structural variability promotes markedly different electronic and optical properties in the MAPbI3 and FAPbI3 perovskites, mediated by the different spin–orbit coupling, leading to improved charge transport and red-shifted absorption in FAPbI3 and in general in pseudocubic structures. Our theoretical model constitutes the basis for the rationale design of new and more efficient organohalide perovskites for solar cells applications.</description><subject>Applied sciences</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronic transport in multilayers, nanoscale materials and structures</subject><subject>Electronics</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Molecular electronics, nanoelectronics</subject><subject>Natural energy</subject><subject>Photovoltaic conversion</subject><subject>Physics</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar energy</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><recordid>eNptkMFu1DAQhi1ERUvhwAsgX5DKIWXsxE7CDVZQVqq0SCznaOLYrYvXDrZTqTfegTfkSXDVZXvhNKPRN_-MPkJeMThnwNk77wQw3vf8CTlhooZKlv7poe-aY_I8pRsA6GsBz8gxb9q-rRt-QvIKsw2-WvtpUXqiH9FP1QXOdLt466-o9XQTr9CHa3R20vSrjuE2_bBZp_d07bOOs8M7Ggz9Nlv_59fvTRxtpquwzO5-v8TRjcp4raeIdGtdLtMX5MigS_rlvp6S758_bVdfqsvNxXr14bLCppG5qlkjNQjoWC_U2ErgLZdTx1vTQfm-RmO4QINTa0amRStHxTSOWpiml9D19Sk5e8idY_i56JSHnU1KO4dehyUNxY_g0HGQBX37gKoYUoraDHO0O4x3A4PhXvJwkFzY1_vYZdzp6UD-s1qAN3sAk0JnInpl0yPXSZBdLx45VGm4CUv0xcZ_Dv4FvTuQbQ</recordid><startdate>20140611</startdate><enddate>20140611</enddate><creator>Amat, Anna</creator><creator>Mosconi, Edoardo</creator><creator>Ronca, Enrico</creator><creator>Quarti, Claudio</creator><creator>Umari, Paolo</creator><creator>Nazeeruddin, Md. K</creator><creator>Grätzel, Michael</creator><creator>De Angelis, Filippo</creator><general>American Chemical Society</general><scope>N~.</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20140611</creationdate><title>Cation-Induced Band-Gap Tuning in Organohalide Perovskites: Interplay of Spin–Orbit Coupling and Octahedra Tilting</title><author>Amat, Anna ; Mosconi, Edoardo ; Ronca, Enrico ; Quarti, Claudio ; Umari, Paolo ; Nazeeruddin, Md. K ; Grätzel, Michael ; De Angelis, Filippo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a446t-3146e0508195cb7602726d827f807343aff25afad7fb1e576bc1eabe5f4960893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronic transport in multilayers, nanoscale materials and structures</topic><topic>Electronics</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Molecular electronics, nanoelectronics</topic><topic>Natural energy</topic><topic>Photovoltaic conversion</topic><topic>Physics</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amat, Anna</creatorcontrib><creatorcontrib>Mosconi, Edoardo</creatorcontrib><creatorcontrib>Ronca, Enrico</creatorcontrib><creatorcontrib>Quarti, Claudio</creatorcontrib><creatorcontrib>Umari, Paolo</creatorcontrib><creatorcontrib>Nazeeruddin, Md. K</creatorcontrib><creatorcontrib>Grätzel, Michael</creatorcontrib><creatorcontrib>De Angelis, Filippo</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amat, Anna</au><au>Mosconi, Edoardo</au><au>Ronca, Enrico</au><au>Quarti, Claudio</au><au>Umari, Paolo</au><au>Nazeeruddin, Md. K</au><au>Grätzel, Michael</au><au>De Angelis, Filippo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cation-Induced Band-Gap Tuning in Organohalide Perovskites: Interplay of Spin–Orbit Coupling and Octahedra Tilting</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2014-06-11</date><risdate>2014</risdate><volume>14</volume><issue>6</issue><spage>3608</spage><epage>3616</epage><pages>3608-3616</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Organohalide lead perovskites have revolutionized the scenario of emerging photovoltaic technologies. The prototype MAPbI3 perovskite (MA = CH3NH3 +) has dominated the field, despite only harvesting photons above 750 nm (∼1.6 eV). Intensive research efforts are being devoted to find new perovskites with red-shifted absorption onset, along with good charge transport properties. Recently, a new perovskite based on the formamidinium cation ((NH2)2CH+ = FA) has shown potentially superior properties in terms of band gap and charge transport compared to MAPbI3. The results have been interpreted in terms of the cation size, with the larger FA cation expectedly delivering reduced band-gaps in Pb-based perovskites. To provide a full understanding of the interplay among size, structure, and organic/inorganic interactions in determining the properties of APbI3 perovskites, in view of designing new materials and fully exploiting them for solar cells applications, we report a fully first-principles investigation on APbI3 perovskites with A = Cs+, MA, and FA. Our results evidence that the tetragonal-to-quasi cubic structural evolution observed when moving from MA to FA is due to the interplay of size effects and enhanced hydrogen bonding between the FA cations and the inorganic matrix altering the covalent/ionic character of Pb–I bonds. Most notably, the observed cation-induced structural variability promotes markedly different electronic and optical properties in the MAPbI3 and FAPbI3 perovskites, mediated by the different spin–orbit coupling, leading to improved charge transport and red-shifted absorption in FAPbI3 and in general in pseudocubic structures. Our theoretical model constitutes the basis for the rationale design of new and more efficient organohalide perovskites for solar cells applications.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>24797342</pmid><doi>10.1021/nl5012992</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2014-06, Vol.14 (6), p.3608-3616
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_1535208206
source ACS Publications
subjects Applied sciences
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Electronic transport in multilayers, nanoscale materials and structures
Electronics
Energy
Exact sciences and technology
Molecular electronics, nanoelectronics
Natural energy
Photovoltaic conversion
Physics
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Solar cells. Photoelectrochemical cells
Solar energy
title Cation-Induced Band-Gap Tuning in Organohalide Perovskites: Interplay of Spin–Orbit Coupling and Octahedra Tilting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T14%3A57%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cation-Induced%20Band-Gap%20Tuning%20in%20Organohalide%20Perovskites:%20Interplay%20of%20Spin%E2%80%93Orbit%20Coupling%20and%20Octahedra%20Tilting&rft.jtitle=Nano%20letters&rft.au=Amat,%20Anna&rft.date=2014-06-11&rft.volume=14&rft.issue=6&rft.spage=3608&rft.epage=3616&rft.pages=3608-3616&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl5012992&rft_dat=%3Cproquest_cross%3E1535208206%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1535208206&rft_id=info:pmid/24797342&rfr_iscdi=true