Molecular interaction of different chromium species with nucleotides and nucleic acids
The interaction of chromium(III) and chromium(VI) with the phosphate groups of di- and triphosphate nucleotides were examined by 31P-NMR spectroscopy. Chemical shifts of the phosphate groups, indicating the formation of Cr-nucleotide complexes, could only be detected with Cr(III). When Cr(III) was g...
Gespeichert in:
Veröffentlicht in: | Carcinogenesis (New York) 1989-04, Vol.10 (4), p.655-659 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 659 |
---|---|
container_issue | 4 |
container_start_page | 655 |
container_title | Carcinogenesis (New York) |
container_volume | 10 |
creator | Wolf, Th Kasemann, R. Ottenwälder, H. |
description | The interaction of chromium(III) and chromium(VI) with the phosphate groups of di- and triphosphate nucleotides were examined by 31P-NMR spectroscopy. Chemical shifts of the phosphate groups, indicating the formation of Cr-nucleotide complexes, could only be detected with Cr(III). When Cr(III) was generated from Cr(VI) by reduction with an excess of glutathione, nearly the same chemical shifts could be observed. This indicates that glutathione is not capable of trapping Cr(VI) by reduction with subsequent formation of stable Cr-GSH complexes, thus preventing the binding of chromium to important target molecules as DNA or nucleotides. Using radioactively-labelled chromium no 51Cr(VI) bound to any nucleic acid, whereas 51Cr(III) bound in increasing order to poly(A)⋅poly(U), calf thymus DNA and poly(G)⋅poly(C). Furthermore, the melting temperature of nucleic acids increased in the same order only in the presence of Cr(III). Possible genotoxic consequences in vivo of the presented data in vitro concerning the binding of Cr(III) to sensitive molecular targets are discussed in detail. |
doi_str_mv | 10.1093/carcin/10.4.655 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_15351104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>15351104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-c6fb1e41562e5bcfa0d78a800a4248aa249537f6d153f98f646066efd51e22603</originalsourceid><addsrcrecordid>eNo9kM1r20AQxZfQ4rhpzjkFdCi5Kd5vScfiJHUhpRQSUXJZxqtZvIk-3F2JtP9918j4NLx5vzcwj5ArRm8ZrcTKQrC-XyUpb7VSZ2TJpKY5ZyX9QJaUSZELIeQ5-RTjK6VMC1UtyIIXlBdMLkn9Y2jRTi2EzPcjBrCjH_pscFnjncOA_ZjZXRg6P3VZ3KP1GLN3P-6yfrItDqNv0gL6ZtbeZmB9Ez-Tjw7aiJfHeUGeH-6f1pv88ee37-uvj7kVFR1zq92WoWRKc1Rb64A2RQklpSC5LAG4rJQonG6YEq4qnU6_aY2uUQw511RckJv57j4MfyaMo-l8tNi20OMwRZNyijEqE7iaQRuGGAM6sw--g_DPMGoOTZq5yYOUJjWZEtfH09O2w-bEH6tL_pejD9FC6wL01scTpjVXomQJy2fMxxH_nmwIb0YXolBm8_vF1PXdU1X_Ko0S_wF7C4yv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15351104</pqid></control><display><type>article</type><title>Molecular interaction of different chromium species with nucleotides and nucleic acids</title><source>MEDLINE</source><source>Oxford University Press Journals Digital Archive Legacy</source><creator>Wolf, Th ; Kasemann, R. ; Ottenwälder, H.</creator><creatorcontrib>Wolf, Th ; Kasemann, R. ; Ottenwälder, H.</creatorcontrib><description>The interaction of chromium(III) and chromium(VI) with the phosphate groups of di- and triphosphate nucleotides were examined by 31P-NMR spectroscopy. Chemical shifts of the phosphate groups, indicating the formation of Cr-nucleotide complexes, could only be detected with Cr(III). When Cr(III) was generated from Cr(VI) by reduction with an excess of glutathione, nearly the same chemical shifts could be observed. This indicates that glutathione is not capable of trapping Cr(VI) by reduction with subsequent formation of stable Cr-GSH complexes, thus preventing the binding of chromium to important target molecules as DNA or nucleotides. Using radioactively-labelled chromium no 51Cr(VI) bound to any nucleic acid, whereas 51Cr(III) bound in increasing order to poly(A)⋅poly(U), calf thymus DNA and poly(G)⋅poly(C). Furthermore, the melting temperature of nucleic acids increased in the same order only in the presence of Cr(III). Possible genotoxic consequences in vivo of the presented data in vitro concerning the binding of Cr(III) to sensitive molecular targets are discussed in detail.</description><identifier>ISSN: 0143-3334</identifier><identifier>EISSN: 1460-2180</identifier><identifier>DOI: 10.1093/carcin/10.4.655</identifier><identifier>PMID: 2702714</identifier><identifier>CODEN: CRNGDP</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Biological and medical sciences ; Chemical and industrial products toxicology. Toxic occupational diseases ; Chromium - metabolism ; DNA - metabolism ; Magnetic Resonance Spectroscopy ; Medical sciences ; Metals and various inorganic compounds ; Nucleotides - metabolism ; Phosphates - metabolism ; Poly A - metabolism ; Poly C - metabolism ; Poly G - metabolism ; Poly U - metabolism ; Toxicology</subject><ispartof>Carcinogenesis (New York), 1989-04, Vol.10 (4), p.655-659</ispartof><rights>1990 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-c6fb1e41562e5bcfa0d78a800a4248aa249537f6d153f98f646066efd51e22603</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=6625381$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/2702714$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wolf, Th</creatorcontrib><creatorcontrib>Kasemann, R.</creatorcontrib><creatorcontrib>Ottenwälder, H.</creatorcontrib><title>Molecular interaction of different chromium species with nucleotides and nucleic acids</title><title>Carcinogenesis (New York)</title><addtitle>Carcinogenesis</addtitle><description>The interaction of chromium(III) and chromium(VI) with the phosphate groups of di- and triphosphate nucleotides were examined by 31P-NMR spectroscopy. Chemical shifts of the phosphate groups, indicating the formation of Cr-nucleotide complexes, could only be detected with Cr(III). When Cr(III) was generated from Cr(VI) by reduction with an excess of glutathione, nearly the same chemical shifts could be observed. This indicates that glutathione is not capable of trapping Cr(VI) by reduction with subsequent formation of stable Cr-GSH complexes, thus preventing the binding of chromium to important target molecules as DNA or nucleotides. Using radioactively-labelled chromium no 51Cr(VI) bound to any nucleic acid, whereas 51Cr(III) bound in increasing order to poly(A)⋅poly(U), calf thymus DNA and poly(G)⋅poly(C). Furthermore, the melting temperature of nucleic acids increased in the same order only in the presence of Cr(III). Possible genotoxic consequences in vivo of the presented data in vitro concerning the binding of Cr(III) to sensitive molecular targets are discussed in detail.</description><subject>Biological and medical sciences</subject><subject>Chemical and industrial products toxicology. Toxic occupational diseases</subject><subject>Chromium - metabolism</subject><subject>DNA - metabolism</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Medical sciences</subject><subject>Metals and various inorganic compounds</subject><subject>Nucleotides - metabolism</subject><subject>Phosphates - metabolism</subject><subject>Poly A - metabolism</subject><subject>Poly C - metabolism</subject><subject>Poly G - metabolism</subject><subject>Poly U - metabolism</subject><subject>Toxicology</subject><issn>0143-3334</issn><issn>1460-2180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kM1r20AQxZfQ4rhpzjkFdCi5Kd5vScfiJHUhpRQSUXJZxqtZvIk-3F2JtP9918j4NLx5vzcwj5ArRm8ZrcTKQrC-XyUpb7VSZ2TJpKY5ZyX9QJaUSZELIeQ5-RTjK6VMC1UtyIIXlBdMLkn9Y2jRTi2EzPcjBrCjH_pscFnjncOA_ZjZXRg6P3VZ3KP1GLN3P-6yfrItDqNv0gL6ZtbeZmB9Ez-Tjw7aiJfHeUGeH-6f1pv88ee37-uvj7kVFR1zq92WoWRKc1Rb64A2RQklpSC5LAG4rJQonG6YEq4qnU6_aY2uUQw511RckJv57j4MfyaMo-l8tNi20OMwRZNyijEqE7iaQRuGGAM6sw--g_DPMGoOTZq5yYOUJjWZEtfH09O2w-bEH6tL_pejD9FC6wL01scTpjVXomQJy2fMxxH_nmwIb0YXolBm8_vF1PXdU1X_Ko0S_wF7C4yv</recordid><startdate>19890401</startdate><enddate>19890401</enddate><creator>Wolf, Th</creator><creator>Kasemann, R.</creator><creator>Ottenwälder, H.</creator><general>Oxford University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope></search><sort><creationdate>19890401</creationdate><title>Molecular interaction of different chromium species with nucleotides and nucleic acids</title><author>Wolf, Th ; Kasemann, R. ; Ottenwälder, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-c6fb1e41562e5bcfa0d78a800a4248aa249537f6d153f98f646066efd51e22603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Biological and medical sciences</topic><topic>Chemical and industrial products toxicology. Toxic occupational diseases</topic><topic>Chromium - metabolism</topic><topic>DNA - metabolism</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Medical sciences</topic><topic>Metals and various inorganic compounds</topic><topic>Nucleotides - metabolism</topic><topic>Phosphates - metabolism</topic><topic>Poly A - metabolism</topic><topic>Poly C - metabolism</topic><topic>Poly G - metabolism</topic><topic>Poly U - metabolism</topic><topic>Toxicology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wolf, Th</creatorcontrib><creatorcontrib>Kasemann, R.</creatorcontrib><creatorcontrib>Ottenwälder, H.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><jtitle>Carcinogenesis (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wolf, Th</au><au>Kasemann, R.</au><au>Ottenwälder, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular interaction of different chromium species with nucleotides and nucleic acids</atitle><jtitle>Carcinogenesis (New York)</jtitle><addtitle>Carcinogenesis</addtitle><date>1989-04-01</date><risdate>1989</risdate><volume>10</volume><issue>4</issue><spage>655</spage><epage>659</epage><pages>655-659</pages><issn>0143-3334</issn><eissn>1460-2180</eissn><coden>CRNGDP</coden><abstract>The interaction of chromium(III) and chromium(VI) with the phosphate groups of di- and triphosphate nucleotides were examined by 31P-NMR spectroscopy. Chemical shifts of the phosphate groups, indicating the formation of Cr-nucleotide complexes, could only be detected with Cr(III). When Cr(III) was generated from Cr(VI) by reduction with an excess of glutathione, nearly the same chemical shifts could be observed. This indicates that glutathione is not capable of trapping Cr(VI) by reduction with subsequent formation of stable Cr-GSH complexes, thus preventing the binding of chromium to important target molecules as DNA or nucleotides. Using radioactively-labelled chromium no 51Cr(VI) bound to any nucleic acid, whereas 51Cr(III) bound in increasing order to poly(A)⋅poly(U), calf thymus DNA and poly(G)⋅poly(C). Furthermore, the melting temperature of nucleic acids increased in the same order only in the presence of Cr(III). Possible genotoxic consequences in vivo of the presented data in vitro concerning the binding of Cr(III) to sensitive molecular targets are discussed in detail.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>2702714</pmid><doi>10.1093/carcin/10.4.655</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-3334 |
ispartof | Carcinogenesis (New York), 1989-04, Vol.10 (4), p.655-659 |
issn | 0143-3334 1460-2180 |
language | eng |
recordid | cdi_proquest_miscellaneous_15351104 |
source | MEDLINE; Oxford University Press Journals Digital Archive Legacy |
subjects | Biological and medical sciences Chemical and industrial products toxicology. Toxic occupational diseases Chromium - metabolism DNA - metabolism Magnetic Resonance Spectroscopy Medical sciences Metals and various inorganic compounds Nucleotides - metabolism Phosphates - metabolism Poly A - metabolism Poly C - metabolism Poly G - metabolism Poly U - metabolism Toxicology |
title | Molecular interaction of different chromium species with nucleotides and nucleic acids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T08%3A52%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20interaction%20of%20different%20chromium%20species%20with%20nucleotides%20and%20nucleic%20acids&rft.jtitle=Carcinogenesis%20(New%20York)&rft.au=Wolf,%20Th&rft.date=1989-04-01&rft.volume=10&rft.issue=4&rft.spage=655&rft.epage=659&rft.pages=655-659&rft.issn=0143-3334&rft.eissn=1460-2180&rft.coden=CRNGDP&rft_id=info:doi/10.1093/carcin/10.4.655&rft_dat=%3Cproquest_cross%3E15351104%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15351104&rft_id=info:pmid/2702714&rfr_iscdi=true |