Molecular interaction of different chromium species with nucleotides and nucleic acids

The interaction of chromium(III) and chromium(VI) with the phosphate groups of di- and triphosphate nucleotides were examined by 31P-NMR spectroscopy. Chemical shifts of the phosphate groups, indicating the formation of Cr-nucleotide complexes, could only be detected with Cr(III). When Cr(III) was g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carcinogenesis (New York) 1989-04, Vol.10 (4), p.655-659
Hauptverfasser: Wolf, Th, Kasemann, R., Ottenwälder, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 659
container_issue 4
container_start_page 655
container_title Carcinogenesis (New York)
container_volume 10
creator Wolf, Th
Kasemann, R.
Ottenwälder, H.
description The interaction of chromium(III) and chromium(VI) with the phosphate groups of di- and triphosphate nucleotides were examined by 31P-NMR spectroscopy. Chemical shifts of the phosphate groups, indicating the formation of Cr-nucleotide complexes, could only be detected with Cr(III). When Cr(III) was generated from Cr(VI) by reduction with an excess of glutathione, nearly the same chemical shifts could be observed. This indicates that glutathione is not capable of trapping Cr(VI) by reduction with subsequent formation of stable Cr-GSH complexes, thus preventing the binding of chromium to important target molecules as DNA or nucleotides. Using radioactively-labelled chromium no 51Cr(VI) bound to any nucleic acid, whereas 51Cr(III) bound in increasing order to poly(A)⋅poly(U), calf thymus DNA and poly(G)⋅poly(C). Furthermore, the melting temperature of nucleic acids increased in the same order only in the presence of Cr(III). Possible genotoxic consequences in vivo of the presented data in vitro concerning the binding of Cr(III) to sensitive molecular targets are discussed in detail.
doi_str_mv 10.1093/carcin/10.4.655
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_15351104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>15351104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-c6fb1e41562e5bcfa0d78a800a4248aa249537f6d153f98f646066efd51e22603</originalsourceid><addsrcrecordid>eNo9kM1r20AQxZfQ4rhpzjkFdCi5Kd5vScfiJHUhpRQSUXJZxqtZvIk-3F2JtP9918j4NLx5vzcwj5ArRm8ZrcTKQrC-XyUpb7VSZ2TJpKY5ZyX9QJaUSZELIeQ5-RTjK6VMC1UtyIIXlBdMLkn9Y2jRTi2EzPcjBrCjH_pscFnjncOA_ZjZXRg6P3VZ3KP1GLN3P-6yfrItDqNv0gL6ZtbeZmB9Ez-Tjw7aiJfHeUGeH-6f1pv88ee37-uvj7kVFR1zq92WoWRKc1Rb64A2RQklpSC5LAG4rJQonG6YEq4qnU6_aY2uUQw511RckJv57j4MfyaMo-l8tNi20OMwRZNyijEqE7iaQRuGGAM6sw--g_DPMGoOTZq5yYOUJjWZEtfH09O2w-bEH6tL_pejD9FC6wL01scTpjVXomQJy2fMxxH_nmwIb0YXolBm8_vF1PXdU1X_Ko0S_wF7C4yv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15351104</pqid></control><display><type>article</type><title>Molecular interaction of different chromium species with nucleotides and nucleic acids</title><source>MEDLINE</source><source>Oxford University Press Journals Digital Archive Legacy</source><creator>Wolf, Th ; Kasemann, R. ; Ottenwälder, H.</creator><creatorcontrib>Wolf, Th ; Kasemann, R. ; Ottenwälder, H.</creatorcontrib><description>The interaction of chromium(III) and chromium(VI) with the phosphate groups of di- and triphosphate nucleotides were examined by 31P-NMR spectroscopy. Chemical shifts of the phosphate groups, indicating the formation of Cr-nucleotide complexes, could only be detected with Cr(III). When Cr(III) was generated from Cr(VI) by reduction with an excess of glutathione, nearly the same chemical shifts could be observed. This indicates that glutathione is not capable of trapping Cr(VI) by reduction with subsequent formation of stable Cr-GSH complexes, thus preventing the binding of chromium to important target molecules as DNA or nucleotides. Using radioactively-labelled chromium no 51Cr(VI) bound to any nucleic acid, whereas 51Cr(III) bound in increasing order to poly(A)⋅poly(U), calf thymus DNA and poly(G)⋅poly(C). Furthermore, the melting temperature of nucleic acids increased in the same order only in the presence of Cr(III). Possible genotoxic consequences in vivo of the presented data in vitro concerning the binding of Cr(III) to sensitive molecular targets are discussed in detail.</description><identifier>ISSN: 0143-3334</identifier><identifier>EISSN: 1460-2180</identifier><identifier>DOI: 10.1093/carcin/10.4.655</identifier><identifier>PMID: 2702714</identifier><identifier>CODEN: CRNGDP</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Biological and medical sciences ; Chemical and industrial products toxicology. Toxic occupational diseases ; Chromium - metabolism ; DNA - metabolism ; Magnetic Resonance Spectroscopy ; Medical sciences ; Metals and various inorganic compounds ; Nucleotides - metabolism ; Phosphates - metabolism ; Poly A - metabolism ; Poly C - metabolism ; Poly G - metabolism ; Poly U - metabolism ; Toxicology</subject><ispartof>Carcinogenesis (New York), 1989-04, Vol.10 (4), p.655-659</ispartof><rights>1990 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-c6fb1e41562e5bcfa0d78a800a4248aa249537f6d153f98f646066efd51e22603</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=6625381$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/2702714$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wolf, Th</creatorcontrib><creatorcontrib>Kasemann, R.</creatorcontrib><creatorcontrib>Ottenwälder, H.</creatorcontrib><title>Molecular interaction of different chromium species with nucleotides and nucleic acids</title><title>Carcinogenesis (New York)</title><addtitle>Carcinogenesis</addtitle><description>The interaction of chromium(III) and chromium(VI) with the phosphate groups of di- and triphosphate nucleotides were examined by 31P-NMR spectroscopy. Chemical shifts of the phosphate groups, indicating the formation of Cr-nucleotide complexes, could only be detected with Cr(III). When Cr(III) was generated from Cr(VI) by reduction with an excess of glutathione, nearly the same chemical shifts could be observed. This indicates that glutathione is not capable of trapping Cr(VI) by reduction with subsequent formation of stable Cr-GSH complexes, thus preventing the binding of chromium to important target molecules as DNA or nucleotides. Using radioactively-labelled chromium no 51Cr(VI) bound to any nucleic acid, whereas 51Cr(III) bound in increasing order to poly(A)⋅poly(U), calf thymus DNA and poly(G)⋅poly(C). Furthermore, the melting temperature of nucleic acids increased in the same order only in the presence of Cr(III). Possible genotoxic consequences in vivo of the presented data in vitro concerning the binding of Cr(III) to sensitive molecular targets are discussed in detail.</description><subject>Biological and medical sciences</subject><subject>Chemical and industrial products toxicology. Toxic occupational diseases</subject><subject>Chromium - metabolism</subject><subject>DNA - metabolism</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Medical sciences</subject><subject>Metals and various inorganic compounds</subject><subject>Nucleotides - metabolism</subject><subject>Phosphates - metabolism</subject><subject>Poly A - metabolism</subject><subject>Poly C - metabolism</subject><subject>Poly G - metabolism</subject><subject>Poly U - metabolism</subject><subject>Toxicology</subject><issn>0143-3334</issn><issn>1460-2180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kM1r20AQxZfQ4rhpzjkFdCi5Kd5vScfiJHUhpRQSUXJZxqtZvIk-3F2JtP9918j4NLx5vzcwj5ArRm8ZrcTKQrC-XyUpb7VSZ2TJpKY5ZyX9QJaUSZELIeQ5-RTjK6VMC1UtyIIXlBdMLkn9Y2jRTi2EzPcjBrCjH_pscFnjncOA_ZjZXRg6P3VZ3KP1GLN3P-6yfrItDqNv0gL6ZtbeZmB9Ez-Tjw7aiJfHeUGeH-6f1pv88ee37-uvj7kVFR1zq92WoWRKc1Rb64A2RQklpSC5LAG4rJQonG6YEq4qnU6_aY2uUQw511RckJv57j4MfyaMo-l8tNi20OMwRZNyijEqE7iaQRuGGAM6sw--g_DPMGoOTZq5yYOUJjWZEtfH09O2w-bEH6tL_pejD9FC6wL01scTpjVXomQJy2fMxxH_nmwIb0YXolBm8_vF1PXdU1X_Ko0S_wF7C4yv</recordid><startdate>19890401</startdate><enddate>19890401</enddate><creator>Wolf, Th</creator><creator>Kasemann, R.</creator><creator>Ottenwälder, H.</creator><general>Oxford University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope></search><sort><creationdate>19890401</creationdate><title>Molecular interaction of different chromium species with nucleotides and nucleic acids</title><author>Wolf, Th ; Kasemann, R. ; Ottenwälder, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-c6fb1e41562e5bcfa0d78a800a4248aa249537f6d153f98f646066efd51e22603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Biological and medical sciences</topic><topic>Chemical and industrial products toxicology. Toxic occupational diseases</topic><topic>Chromium - metabolism</topic><topic>DNA - metabolism</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Medical sciences</topic><topic>Metals and various inorganic compounds</topic><topic>Nucleotides - metabolism</topic><topic>Phosphates - metabolism</topic><topic>Poly A - metabolism</topic><topic>Poly C - metabolism</topic><topic>Poly G - metabolism</topic><topic>Poly U - metabolism</topic><topic>Toxicology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wolf, Th</creatorcontrib><creatorcontrib>Kasemann, R.</creatorcontrib><creatorcontrib>Ottenwälder, H.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><jtitle>Carcinogenesis (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wolf, Th</au><au>Kasemann, R.</au><au>Ottenwälder, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular interaction of different chromium species with nucleotides and nucleic acids</atitle><jtitle>Carcinogenesis (New York)</jtitle><addtitle>Carcinogenesis</addtitle><date>1989-04-01</date><risdate>1989</risdate><volume>10</volume><issue>4</issue><spage>655</spage><epage>659</epage><pages>655-659</pages><issn>0143-3334</issn><eissn>1460-2180</eissn><coden>CRNGDP</coden><abstract>The interaction of chromium(III) and chromium(VI) with the phosphate groups of di- and triphosphate nucleotides were examined by 31P-NMR spectroscopy. Chemical shifts of the phosphate groups, indicating the formation of Cr-nucleotide complexes, could only be detected with Cr(III). When Cr(III) was generated from Cr(VI) by reduction with an excess of glutathione, nearly the same chemical shifts could be observed. This indicates that glutathione is not capable of trapping Cr(VI) by reduction with subsequent formation of stable Cr-GSH complexes, thus preventing the binding of chromium to important target molecules as DNA or nucleotides. Using radioactively-labelled chromium no 51Cr(VI) bound to any nucleic acid, whereas 51Cr(III) bound in increasing order to poly(A)⋅poly(U), calf thymus DNA and poly(G)⋅poly(C). Furthermore, the melting temperature of nucleic acids increased in the same order only in the presence of Cr(III). Possible genotoxic consequences in vivo of the presented data in vitro concerning the binding of Cr(III) to sensitive molecular targets are discussed in detail.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>2702714</pmid><doi>10.1093/carcin/10.4.655</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0143-3334
ispartof Carcinogenesis (New York), 1989-04, Vol.10 (4), p.655-659
issn 0143-3334
1460-2180
language eng
recordid cdi_proquest_miscellaneous_15351104
source MEDLINE; Oxford University Press Journals Digital Archive Legacy
subjects Biological and medical sciences
Chemical and industrial products toxicology. Toxic occupational diseases
Chromium - metabolism
DNA - metabolism
Magnetic Resonance Spectroscopy
Medical sciences
Metals and various inorganic compounds
Nucleotides - metabolism
Phosphates - metabolism
Poly A - metabolism
Poly C - metabolism
Poly G - metabolism
Poly U - metabolism
Toxicology
title Molecular interaction of different chromium species with nucleotides and nucleic acids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T08%3A52%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20interaction%20of%20different%20chromium%20species%20with%20nucleotides%20and%20nucleic%20acids&rft.jtitle=Carcinogenesis%20(New%20York)&rft.au=Wolf,%20Th&rft.date=1989-04-01&rft.volume=10&rft.issue=4&rft.spage=655&rft.epage=659&rft.pages=655-659&rft.issn=0143-3334&rft.eissn=1460-2180&rft.coden=CRNGDP&rft_id=info:doi/10.1093/carcin/10.4.655&rft_dat=%3Cproquest_cross%3E15351104%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15351104&rft_id=info:pmid/2702714&rfr_iscdi=true