Exploiting extension bias in polymerase chain reaction to improve primer specificity in ensembles of nearly identical DNA templates

We describe a semi‐empirical framework that combines thermodynamic models of primer hybridization with experimentally determined elongation biases introduced by 3′‐end mismatches for improving polymerase chain reaction (PCR)‐based sequence discrimination. The framework enables rational and automatic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental microbiology 2014-05, Vol.16 (5), p.1354-1365
Hauptverfasser: Wright, Erik S, Yilmaz, L. Safak, Ram, Sri, Gasser, Jeremy M, Harrington, Gregory W, Noguera, Daniel R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1365
container_issue 5
container_start_page 1354
container_title Environmental microbiology
container_volume 16
creator Wright, Erik S
Yilmaz, L. Safak
Ram, Sri
Gasser, Jeremy M
Harrington, Gregory W
Noguera, Daniel R
description We describe a semi‐empirical framework that combines thermodynamic models of primer hybridization with experimentally determined elongation biases introduced by 3′‐end mismatches for improving polymerase chain reaction (PCR)‐based sequence discrimination. The framework enables rational and automatic design of primers for optimal targeting of one or more sequences in ensembles of nearly identical DNA templates. In situations where optimal targeting is not feasible, the framework accurately predicts non‐target sequences that are difficult to distinguish with PCR alone. Based on the synergistic effects of disparate sources of PCR bias, we used our framework to robustly distinguish between two alleles that differ by a single base pair. To demonstrate the applicability to environmental microbiology, we designed primers specific to all recognized archaeal and bacterial genera in the Ribosomal Database Project, and have made these primers available online. We applied these primers experimentally to obtain genus‐specific amplification of 16S rRNA genes representing minor constituents of an environmental DNA sample. Our results demonstrate that inherent PCR biases can be reliably employed in an automatic fashion to maximize sequence discrimination and accurately identify potential cross‐amplifications. We have made our framework accessible online as a programme for designing primers targeting one group of sequences in a set with many other sequences (http://DECIPHER.cee.wisc.edu).
doi_str_mv 10.1111/1462-2920.12259
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1534848132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1518618928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4969-53256f9c72c35884b0e33e4e497af14e20c0499b7fcfeabb606c234eb07fa0a23</originalsourceid><addsrcrecordid>eNqNkstv1DAQxiMEog84cwNLqBKXUL8TH0tZSkVZhKBC4mI57ri4OA_sLOye-cdxyHaRuIAvtke_bzyeb4riEcHPSV7HhEtaUkXzlVKh7hT7u8jd3ZnQveIgpRuMScUqfL_Yo7wSWDC5X_xcrIfQ-9F31wjWI3TJ9x1qvEnId2jow6aFaBIg-8XkQARjx4kYe-TbIfbfAQ3RZwalAax33vpxM0lzJmibAAn1DnVgYsjhK-hGb01AL5cnaIR2CGaE9KC450xI8HC7HxaXrxYfT1-XF-_Ozk9PLkrLlVSlYFRIp2xFLRN1zRsMjAEHrirjCAeKLeZKNZWzDkzTSCwtZRwaXDmDDWWHxbM5b6772wrSqFufLIRgOuhXSRPBeM1rwv4HJbUktaJ1Rp_-hd70q9jlj0xUpZSgNc_U8UzZ2KcUwempbSZuNMF6slJPZunJOP3byqx4vM27alq42vG33mXgaAuYlHvqoumsT3-4mtOayIkTM_fDB9j86129eHt-W0A563waYb3TmfhVyzxHQn9anun3mLA3cvlZv8j8k5l3ptfmOuZaLj9QTHieO0wrQdgvtsvN7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1517995284</pqid></control><display><type>article</type><title>Exploiting extension bias in polymerase chain reaction to improve primer specificity in ensembles of nearly identical DNA templates</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wright, Erik S ; Yilmaz, L. Safak ; Ram, Sri ; Gasser, Jeremy M ; Harrington, Gregory W ; Noguera, Daniel R</creator><creatorcontrib>Wright, Erik S ; Yilmaz, L. Safak ; Ram, Sri ; Gasser, Jeremy M ; Harrington, Gregory W ; Noguera, Daniel R</creatorcontrib><description>We describe a semi‐empirical framework that combines thermodynamic models of primer hybridization with experimentally determined elongation biases introduced by 3′‐end mismatches for improving polymerase chain reaction (PCR)‐based sequence discrimination. The framework enables rational and automatic design of primers for optimal targeting of one or more sequences in ensembles of nearly identical DNA templates. In situations where optimal targeting is not feasible, the framework accurately predicts non‐target sequences that are difficult to distinguish with PCR alone. Based on the synergistic effects of disparate sources of PCR bias, we used our framework to robustly distinguish between two alleles that differ by a single base pair. To demonstrate the applicability to environmental microbiology, we designed primers specific to all recognized archaeal and bacterial genera in the Ribosomal Database Project, and have made these primers available online. We applied these primers experimentally to obtain genus‐specific amplification of 16S rRNA genes representing minor constituents of an environmental DNA sample. Our results demonstrate that inherent PCR biases can be reliably employed in an automatic fashion to maximize sequence discrimination and accurately identify potential cross‐amplifications. We have made our framework accessible online as a programme for designing primers targeting one group of sequences in a set with many other sequences (http://DECIPHER.cee.wisc.edu).</description><identifier>ISSN: 1462-2912</identifier><identifier>EISSN: 1462-2920</identifier><identifier>DOI: 10.1111/1462-2920.12259</identifier><identifier>PMID: 24750536</identifier><language>eng</language><publisher>Oxford: Blackwell Science</publisher><subject>alleles ; Animal, plant and microbial ecology ; Archaea - genetics ; Bacteria - classification ; Bacteria - genetics ; Base Pair Mismatch ; Base Sequence ; Biological and medical sciences ; Deoxyribonucleic acid ; DNA ; DNA - chemistry ; DNA Primers - chemistry ; DNA-Directed DNA Polymerase - metabolism ; Fundamental and applied biological sciences. Psychology ; General aspects ; Genes ; hybridization ; Microbial ecology ; microbiology ; Polymerase chain reaction ; Polymerase Chain Reaction - methods ; ribosomal RNA ; RNA, Ribosomal, 16S - genetics ; synergism ; Templates, Genetic</subject><ispartof>Environmental microbiology, 2014-05, Vol.16 (5), p.1354-1365</ispartof><rights>2013 Society for Applied Microbiology and John Wiley &amp; Sons Ltd</rights><rights>2015 INIST-CNRS</rights><rights>2013 Society for Applied Microbiology and John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2014 Society for Applied Microbiology and John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4969-53256f9c72c35884b0e33e4e497af14e20c0499b7fcfeabb606c234eb07fa0a23</citedby><cites>FETCH-LOGICAL-c4969-53256f9c72c35884b0e33e4e497af14e20c0499b7fcfeabb606c234eb07fa0a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1462-2920.12259$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1462-2920.12259$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28428166$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24750536$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wright, Erik S</creatorcontrib><creatorcontrib>Yilmaz, L. Safak</creatorcontrib><creatorcontrib>Ram, Sri</creatorcontrib><creatorcontrib>Gasser, Jeremy M</creatorcontrib><creatorcontrib>Harrington, Gregory W</creatorcontrib><creatorcontrib>Noguera, Daniel R</creatorcontrib><title>Exploiting extension bias in polymerase chain reaction to improve primer specificity in ensembles of nearly identical DNA templates</title><title>Environmental microbiology</title><addtitle>Environ Microbiol</addtitle><description>We describe a semi‐empirical framework that combines thermodynamic models of primer hybridization with experimentally determined elongation biases introduced by 3′‐end mismatches for improving polymerase chain reaction (PCR)‐based sequence discrimination. The framework enables rational and automatic design of primers for optimal targeting of one or more sequences in ensembles of nearly identical DNA templates. In situations where optimal targeting is not feasible, the framework accurately predicts non‐target sequences that are difficult to distinguish with PCR alone. Based on the synergistic effects of disparate sources of PCR bias, we used our framework to robustly distinguish between two alleles that differ by a single base pair. To demonstrate the applicability to environmental microbiology, we designed primers specific to all recognized archaeal and bacterial genera in the Ribosomal Database Project, and have made these primers available online. We applied these primers experimentally to obtain genus‐specific amplification of 16S rRNA genes representing minor constituents of an environmental DNA sample. Our results demonstrate that inherent PCR biases can be reliably employed in an automatic fashion to maximize sequence discrimination and accurately identify potential cross‐amplifications. We have made our framework accessible online as a programme for designing primers targeting one group of sequences in a set with many other sequences (http://DECIPHER.cee.wisc.edu).</description><subject>alleles</subject><subject>Animal, plant and microbial ecology</subject><subject>Archaea - genetics</subject><subject>Bacteria - classification</subject><subject>Bacteria - genetics</subject><subject>Base Pair Mismatch</subject><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>DNA Primers - chemistry</subject><subject>DNA-Directed DNA Polymerase - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Genes</subject><subject>hybridization</subject><subject>Microbial ecology</subject><subject>microbiology</subject><subject>Polymerase chain reaction</subject><subject>Polymerase Chain Reaction - methods</subject><subject>ribosomal RNA</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>synergism</subject><subject>Templates, Genetic</subject><issn>1462-2912</issn><issn>1462-2920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkstv1DAQxiMEog84cwNLqBKXUL8TH0tZSkVZhKBC4mI57ri4OA_sLOye-cdxyHaRuIAvtke_bzyeb4riEcHPSV7HhEtaUkXzlVKh7hT7u8jd3ZnQveIgpRuMScUqfL_Yo7wSWDC5X_xcrIfQ-9F31wjWI3TJ9x1qvEnId2jow6aFaBIg-8XkQARjx4kYe-TbIfbfAQ3RZwalAax33vpxM0lzJmibAAn1DnVgYsjhK-hGb01AL5cnaIR2CGaE9KC450xI8HC7HxaXrxYfT1-XF-_Ozk9PLkrLlVSlYFRIp2xFLRN1zRsMjAEHrirjCAeKLeZKNZWzDkzTSCwtZRwaXDmDDWWHxbM5b6772wrSqFufLIRgOuhXSRPBeM1rwv4HJbUktaJ1Rp_-hd70q9jlj0xUpZSgNc_U8UzZ2KcUwempbSZuNMF6slJPZunJOP3byqx4vM27alq42vG33mXgaAuYlHvqoumsT3-4mtOayIkTM_fDB9j86129eHt-W0A563waYb3TmfhVyzxHQn9anun3mLA3cvlZv8j8k5l3ptfmOuZaLj9QTHieO0wrQdgvtsvN7Q</recordid><startdate>201405</startdate><enddate>201405</enddate><creator>Wright, Erik S</creator><creator>Yilmaz, L. Safak</creator><creator>Ram, Sri</creator><creator>Gasser, Jeremy M</creator><creator>Harrington, Gregory W</creator><creator>Noguera, Daniel R</creator><general>Blackwell Science</general><general>Blackwell Publishing Ltd</general><general>Blackwell</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>7TM</scope></search><sort><creationdate>201405</creationdate><title>Exploiting extension bias in polymerase chain reaction to improve primer specificity in ensembles of nearly identical DNA templates</title><author>Wright, Erik S ; Yilmaz, L. Safak ; Ram, Sri ; Gasser, Jeremy M ; Harrington, Gregory W ; Noguera, Daniel R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4969-53256f9c72c35884b0e33e4e497af14e20c0499b7fcfeabb606c234eb07fa0a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>alleles</topic><topic>Animal, plant and microbial ecology</topic><topic>Archaea - genetics</topic><topic>Bacteria - classification</topic><topic>Bacteria - genetics</topic><topic>Base Pair Mismatch</topic><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>DNA Primers - chemistry</topic><topic>DNA-Directed DNA Polymerase - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Genes</topic><topic>hybridization</topic><topic>Microbial ecology</topic><topic>microbiology</topic><topic>Polymerase chain reaction</topic><topic>Polymerase Chain Reaction - methods</topic><topic>ribosomal RNA</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>synergism</topic><topic>Templates, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wright, Erik S</creatorcontrib><creatorcontrib>Yilmaz, L. Safak</creatorcontrib><creatorcontrib>Ram, Sri</creatorcontrib><creatorcontrib>Gasser, Jeremy M</creatorcontrib><creatorcontrib>Harrington, Gregory W</creatorcontrib><creatorcontrib>Noguera, Daniel R</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><jtitle>Environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wright, Erik S</au><au>Yilmaz, L. Safak</au><au>Ram, Sri</au><au>Gasser, Jeremy M</au><au>Harrington, Gregory W</au><au>Noguera, Daniel R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploiting extension bias in polymerase chain reaction to improve primer specificity in ensembles of nearly identical DNA templates</atitle><jtitle>Environmental microbiology</jtitle><addtitle>Environ Microbiol</addtitle><date>2014-05</date><risdate>2014</risdate><volume>16</volume><issue>5</issue><spage>1354</spage><epage>1365</epage><pages>1354-1365</pages><issn>1462-2912</issn><eissn>1462-2920</eissn><abstract>We describe a semi‐empirical framework that combines thermodynamic models of primer hybridization with experimentally determined elongation biases introduced by 3′‐end mismatches for improving polymerase chain reaction (PCR)‐based sequence discrimination. The framework enables rational and automatic design of primers for optimal targeting of one or more sequences in ensembles of nearly identical DNA templates. In situations where optimal targeting is not feasible, the framework accurately predicts non‐target sequences that are difficult to distinguish with PCR alone. Based on the synergistic effects of disparate sources of PCR bias, we used our framework to robustly distinguish between two alleles that differ by a single base pair. To demonstrate the applicability to environmental microbiology, we designed primers specific to all recognized archaeal and bacterial genera in the Ribosomal Database Project, and have made these primers available online. We applied these primers experimentally to obtain genus‐specific amplification of 16S rRNA genes representing minor constituents of an environmental DNA sample. Our results demonstrate that inherent PCR biases can be reliably employed in an automatic fashion to maximize sequence discrimination and accurately identify potential cross‐amplifications. We have made our framework accessible online as a programme for designing primers targeting one group of sequences in a set with many other sequences (http://DECIPHER.cee.wisc.edu).</abstract><cop>Oxford</cop><pub>Blackwell Science</pub><pmid>24750536</pmid><doi>10.1111/1462-2920.12259</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1462-2912
ispartof Environmental microbiology, 2014-05, Vol.16 (5), p.1354-1365
issn 1462-2912
1462-2920
language eng
recordid cdi_proquest_miscellaneous_1534848132
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects alleles
Animal, plant and microbial ecology
Archaea - genetics
Bacteria - classification
Bacteria - genetics
Base Pair Mismatch
Base Sequence
Biological and medical sciences
Deoxyribonucleic acid
DNA
DNA - chemistry
DNA Primers - chemistry
DNA-Directed DNA Polymerase - metabolism
Fundamental and applied biological sciences. Psychology
General aspects
Genes
hybridization
Microbial ecology
microbiology
Polymerase chain reaction
Polymerase Chain Reaction - methods
ribosomal RNA
RNA, Ribosomal, 16S - genetics
synergism
Templates, Genetic
title Exploiting extension bias in polymerase chain reaction to improve primer specificity in ensembles of nearly identical DNA templates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A32%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploiting%20extension%20bias%20in%20polymerase%20chain%20reaction%20to%20improve%20primer%20specificity%20in%20ensembles%20of%20nearly%20identical%20DNA%20templates&rft.jtitle=Environmental%20microbiology&rft.au=Wright,%20Erik%20S&rft.date=2014-05&rft.volume=16&rft.issue=5&rft.spage=1354&rft.epage=1365&rft.pages=1354-1365&rft.issn=1462-2912&rft.eissn=1462-2920&rft_id=info:doi/10.1111/1462-2920.12259&rft_dat=%3Cproquest_cross%3E1518618928%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1517995284&rft_id=info:pmid/24750536&rfr_iscdi=true