Relevance of Lysine Snorkeling in the Outer Transmembrane Domain of Small Viral Potassium Ion Channels

Transmembrane domains (TMDs) are often flanked by Lys or Arg because they keep their aliphatic parts in the bilayer and their charged groups in the polar interface. Here we examine the relevance of this so-called “snorkeling” of a cationic amino acid, which is conserved in the outer TMD of small vir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 2012-07, Vol.51 (28), p.5571-5579
Hauptverfasser: Gebhardt, Manuela, Henkes, Leonhard M, Tayefeh, Sascha, Hertel, Brigitte, Greiner, Timo, Van Etten, James L, Baumeister, Dirk, Cosentino, Cristian, Moroni, Anna, Kast, Stefan M, Thiel, Gerhard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5579
container_issue 28
container_start_page 5571
container_title Biochemistry (Easton)
container_volume 51
creator Gebhardt, Manuela
Henkes, Leonhard M
Tayefeh, Sascha
Hertel, Brigitte
Greiner, Timo
Van Etten, James L
Baumeister, Dirk
Cosentino, Cristian
Moroni, Anna
Kast, Stefan M
Thiel, Gerhard
description Transmembrane domains (TMDs) are often flanked by Lys or Arg because they keep their aliphatic parts in the bilayer and their charged groups in the polar interface. Here we examine the relevance of this so-called “snorkeling” of a cationic amino acid, which is conserved in the outer TMD of small viral K+ channels. Experimentally, snorkeling activity is not mandatory for KcvPBCV‑1 because K29 can be replaced by most of the natural amino acids without any corruption of function. Two similar channels, KcvATCV‑1 and KcvMT325, lack a cytosolic N-terminus, and neutralization of their equivalent cationic amino acids inhibits their function. To understand the variable importance of the cationic amino acids, we reanalyzed molecular dynamics simulations of KcvPBCV‑1 and N-terminally truncated mutants; the truncated mutants mimic KcvATCV‑1 and KcvMT325. Structures were analyzed with respect to membrane positioning in relation to the orientation of K29. The results indicate that the architecture of the protein (including the selectivity filter) is only weakly dependent on TMD length and protonation of K29. The penetration depth of Lys in a given protonation state is independent of the TMD architecture, which leads to a distortion of shorter proteins. The data imply that snorkeling can be important for K+ channels; however, its significance depends on the architecture of the entire TMD. The observation that the most severe N-terminal truncation causes the outer TMD to move toward the cytosolic side suggests that snorkeling becomes more relevant if TMDs are not stabilized in the membrane by other domains.
doi_str_mv 10.1021/bi3006016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1534848040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1534848040</sourcerecordid><originalsourceid>FETCH-LOGICAL-a383t-78ae523ff9e154329e5aba2a4746c5d75b716fd67375b47598a591d754b885f3</originalsourceid><addsrcrecordid>eNptkMtOwzAQRS0EoqWw4AeQN0iwCNixHSdLVF6VKhXRim3kpBPq4tjFTpD69xgVumI1rzNXMxehc0puKEnpbaUZIRmh2QEaUpGShBeFOERDErtJWmRkgE5CWMeSE8mP0SBNJeOZyIaoeQUDX8rWgF2Dp9ugLeC5df4DjLbvWFvcrQDP-g48XnhlQwttFSPge9eqOI5r81YZg9-0Vwa_uE6FoPsWT5zF45WyFkw4RUeNMgHOfuMILR4fFuPnZDp7mozvpoliOesSmSsQKWuaAqjgLC1AqEqlikue1WIpRSVp1iwzyWLKpShyJQoa-7zKc9GwEbrayW68--whdGWrQw3GxHtdH0oqGM95Hm2I6PUOrb0LwUNTbrxuld-WlJQ_rpZ7VyN78SvbVy0s9-SfjRG43AGqDuXa9d7GJ_8R-gYBfXzH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1534848040</pqid></control><display><type>article</type><title>Relevance of Lysine Snorkeling in the Outer Transmembrane Domain of Small Viral Potassium Ion Channels</title><source>MEDLINE</source><source>ACS Publications</source><creator>Gebhardt, Manuela ; Henkes, Leonhard M ; Tayefeh, Sascha ; Hertel, Brigitte ; Greiner, Timo ; Van Etten, James L ; Baumeister, Dirk ; Cosentino, Cristian ; Moroni, Anna ; Kast, Stefan M ; Thiel, Gerhard</creator><creatorcontrib>Gebhardt, Manuela ; Henkes, Leonhard M ; Tayefeh, Sascha ; Hertel, Brigitte ; Greiner, Timo ; Van Etten, James L ; Baumeister, Dirk ; Cosentino, Cristian ; Moroni, Anna ; Kast, Stefan M ; Thiel, Gerhard</creatorcontrib><description>Transmembrane domains (TMDs) are often flanked by Lys or Arg because they keep their aliphatic parts in the bilayer and their charged groups in the polar interface. Here we examine the relevance of this so-called “snorkeling” of a cationic amino acid, which is conserved in the outer TMD of small viral K+ channels. Experimentally, snorkeling activity is not mandatory for KcvPBCV‑1 because K29 can be replaced by most of the natural amino acids without any corruption of function. Two similar channels, KcvATCV‑1 and KcvMT325, lack a cytosolic N-terminus, and neutralization of their equivalent cationic amino acids inhibits their function. To understand the variable importance of the cationic amino acids, we reanalyzed molecular dynamics simulations of KcvPBCV‑1 and N-terminally truncated mutants; the truncated mutants mimic KcvATCV‑1 and KcvMT325. Structures were analyzed with respect to membrane positioning in relation to the orientation of K29. The results indicate that the architecture of the protein (including the selectivity filter) is only weakly dependent on TMD length and protonation of K29. The penetration depth of Lys in a given protonation state is independent of the TMD architecture, which leads to a distortion of shorter proteins. The data imply that snorkeling can be important for K+ channels; however, its significance depends on the architecture of the entire TMD. The observation that the most severe N-terminal truncation causes the outer TMD to move toward the cytosolic side suggests that snorkeling becomes more relevant if TMDs are not stabilized in the membrane by other domains.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi3006016</identifier><identifier>PMID: 22734656</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amino Acid Sequence ; Electrophysiological Phenomena ; Green Fluorescent Proteins - genetics ; HEK293 Cells ; Humans ; Lysine - chemistry ; Molecular Dynamics Simulation ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Mutation ; Potassium Channels - chemistry ; Potassium Channels - genetics ; Potassium Channels - physiology ; Protein Structure, Tertiary ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - physiology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth &amp; development ; Saccharomyces cerevisiae - metabolism ; Viral Proteins - chemistry ; Viral Proteins - genetics ; Viral Proteins - physiology</subject><ispartof>Biochemistry (Easton), 2012-07, Vol.51 (28), p.5571-5579</ispartof><rights>Copyright © 2012 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a383t-78ae523ff9e154329e5aba2a4746c5d75b716fd67375b47598a591d754b885f3</citedby><cites>FETCH-LOGICAL-a383t-78ae523ff9e154329e5aba2a4746c5d75b716fd67375b47598a591d754b885f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bi3006016$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bi3006016$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27063,27911,27912,56725,56775</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22734656$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gebhardt, Manuela</creatorcontrib><creatorcontrib>Henkes, Leonhard M</creatorcontrib><creatorcontrib>Tayefeh, Sascha</creatorcontrib><creatorcontrib>Hertel, Brigitte</creatorcontrib><creatorcontrib>Greiner, Timo</creatorcontrib><creatorcontrib>Van Etten, James L</creatorcontrib><creatorcontrib>Baumeister, Dirk</creatorcontrib><creatorcontrib>Cosentino, Cristian</creatorcontrib><creatorcontrib>Moroni, Anna</creatorcontrib><creatorcontrib>Kast, Stefan M</creatorcontrib><creatorcontrib>Thiel, Gerhard</creatorcontrib><title>Relevance of Lysine Snorkeling in the Outer Transmembrane Domain of Small Viral Potassium Ion Channels</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>Transmembrane domains (TMDs) are often flanked by Lys or Arg because they keep their aliphatic parts in the bilayer and their charged groups in the polar interface. Here we examine the relevance of this so-called “snorkeling” of a cationic amino acid, which is conserved in the outer TMD of small viral K+ channels. Experimentally, snorkeling activity is not mandatory for KcvPBCV‑1 because K29 can be replaced by most of the natural amino acids without any corruption of function. Two similar channels, KcvATCV‑1 and KcvMT325, lack a cytosolic N-terminus, and neutralization of their equivalent cationic amino acids inhibits their function. To understand the variable importance of the cationic amino acids, we reanalyzed molecular dynamics simulations of KcvPBCV‑1 and N-terminally truncated mutants; the truncated mutants mimic KcvATCV‑1 and KcvMT325. Structures were analyzed with respect to membrane positioning in relation to the orientation of K29. The results indicate that the architecture of the protein (including the selectivity filter) is only weakly dependent on TMD length and protonation of K29. The penetration depth of Lys in a given protonation state is independent of the TMD architecture, which leads to a distortion of shorter proteins. The data imply that snorkeling can be important for K+ channels; however, its significance depends on the architecture of the entire TMD. The observation that the most severe N-terminal truncation causes the outer TMD to move toward the cytosolic side suggests that snorkeling becomes more relevant if TMDs are not stabilized in the membrane by other domains.</description><subject>Amino Acid Sequence</subject><subject>Electrophysiological Phenomena</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Lysine - chemistry</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutation</subject><subject>Potassium Channels - chemistry</subject><subject>Potassium Channels - genetics</subject><subject>Potassium Channels - physiology</subject><subject>Protein Structure, Tertiary</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - physiology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth &amp; development</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Viral Proteins - chemistry</subject><subject>Viral Proteins - genetics</subject><subject>Viral Proteins - physiology</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkMtOwzAQRS0EoqWw4AeQN0iwCNixHSdLVF6VKhXRim3kpBPq4tjFTpD69xgVumI1rzNXMxehc0puKEnpbaUZIRmh2QEaUpGShBeFOERDErtJWmRkgE5CWMeSE8mP0SBNJeOZyIaoeQUDX8rWgF2Dp9ugLeC5df4DjLbvWFvcrQDP-g48XnhlQwttFSPge9eqOI5r81YZg9-0Vwa_uE6FoPsWT5zF45WyFkw4RUeNMgHOfuMILR4fFuPnZDp7mozvpoliOesSmSsQKWuaAqjgLC1AqEqlikue1WIpRSVp1iwzyWLKpShyJQoa-7zKc9GwEbrayW68--whdGWrQw3GxHtdH0oqGM95Hm2I6PUOrb0LwUNTbrxuld-WlJQ_rpZ7VyN78SvbVy0s9-SfjRG43AGqDuXa9d7GJ_8R-gYBfXzH</recordid><startdate>20120717</startdate><enddate>20120717</enddate><creator>Gebhardt, Manuela</creator><creator>Henkes, Leonhard M</creator><creator>Tayefeh, Sascha</creator><creator>Hertel, Brigitte</creator><creator>Greiner, Timo</creator><creator>Van Etten, James L</creator><creator>Baumeister, Dirk</creator><creator>Cosentino, Cristian</creator><creator>Moroni, Anna</creator><creator>Kast, Stefan M</creator><creator>Thiel, Gerhard</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U9</scope><scope>H94</scope></search><sort><creationdate>20120717</creationdate><title>Relevance of Lysine Snorkeling in the Outer Transmembrane Domain of Small Viral Potassium Ion Channels</title><author>Gebhardt, Manuela ; Henkes, Leonhard M ; Tayefeh, Sascha ; Hertel, Brigitte ; Greiner, Timo ; Van Etten, James L ; Baumeister, Dirk ; Cosentino, Cristian ; Moroni, Anna ; Kast, Stefan M ; Thiel, Gerhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a383t-78ae523ff9e154329e5aba2a4746c5d75b716fd67375b47598a591d754b885f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Amino Acid Sequence</topic><topic>Electrophysiological Phenomena</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Lysine - chemistry</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutation</topic><topic>Potassium Channels - chemistry</topic><topic>Potassium Channels - genetics</topic><topic>Potassium Channels - physiology</topic><topic>Protein Structure, Tertiary</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - physiology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth &amp; development</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Viral Proteins - chemistry</topic><topic>Viral Proteins - genetics</topic><topic>Viral Proteins - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gebhardt, Manuela</creatorcontrib><creatorcontrib>Henkes, Leonhard M</creatorcontrib><creatorcontrib>Tayefeh, Sascha</creatorcontrib><creatorcontrib>Hertel, Brigitte</creatorcontrib><creatorcontrib>Greiner, Timo</creatorcontrib><creatorcontrib>Van Etten, James L</creatorcontrib><creatorcontrib>Baumeister, Dirk</creatorcontrib><creatorcontrib>Cosentino, Cristian</creatorcontrib><creatorcontrib>Moroni, Anna</creatorcontrib><creatorcontrib>Kast, Stefan M</creatorcontrib><creatorcontrib>Thiel, Gerhard</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gebhardt, Manuela</au><au>Henkes, Leonhard M</au><au>Tayefeh, Sascha</au><au>Hertel, Brigitte</au><au>Greiner, Timo</au><au>Van Etten, James L</au><au>Baumeister, Dirk</au><au>Cosentino, Cristian</au><au>Moroni, Anna</au><au>Kast, Stefan M</au><au>Thiel, Gerhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relevance of Lysine Snorkeling in the Outer Transmembrane Domain of Small Viral Potassium Ion Channels</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2012-07-17</date><risdate>2012</risdate><volume>51</volume><issue>28</issue><spage>5571</spage><epage>5579</epage><pages>5571-5579</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>Transmembrane domains (TMDs) are often flanked by Lys or Arg because they keep their aliphatic parts in the bilayer and their charged groups in the polar interface. Here we examine the relevance of this so-called “snorkeling” of a cationic amino acid, which is conserved in the outer TMD of small viral K+ channels. Experimentally, snorkeling activity is not mandatory for KcvPBCV‑1 because K29 can be replaced by most of the natural amino acids without any corruption of function. Two similar channels, KcvATCV‑1 and KcvMT325, lack a cytosolic N-terminus, and neutralization of their equivalent cationic amino acids inhibits their function. To understand the variable importance of the cationic amino acids, we reanalyzed molecular dynamics simulations of KcvPBCV‑1 and N-terminally truncated mutants; the truncated mutants mimic KcvATCV‑1 and KcvMT325. Structures were analyzed with respect to membrane positioning in relation to the orientation of K29. The results indicate that the architecture of the protein (including the selectivity filter) is only weakly dependent on TMD length and protonation of K29. The penetration depth of Lys in a given protonation state is independent of the TMD architecture, which leads to a distortion of shorter proteins. The data imply that snorkeling can be important for K+ channels; however, its significance depends on the architecture of the entire TMD. The observation that the most severe N-terminal truncation causes the outer TMD to move toward the cytosolic side suggests that snorkeling becomes more relevant if TMDs are not stabilized in the membrane by other domains.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>22734656</pmid><doi>10.1021/bi3006016</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-2960
ispartof Biochemistry (Easton), 2012-07, Vol.51 (28), p.5571-5579
issn 0006-2960
1520-4995
language eng
recordid cdi_proquest_miscellaneous_1534848040
source MEDLINE; ACS Publications
subjects Amino Acid Sequence
Electrophysiological Phenomena
Green Fluorescent Proteins - genetics
HEK293 Cells
Humans
Lysine - chemistry
Molecular Dynamics Simulation
Molecular Sequence Data
Mutagenesis, Site-Directed
Mutation
Potassium Channels - chemistry
Potassium Channels - genetics
Potassium Channels - physiology
Protein Structure, Tertiary
Recombinant Fusion Proteins - genetics
Recombinant Fusion Proteins - physiology
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - growth & development
Saccharomyces cerevisiae - metabolism
Viral Proteins - chemistry
Viral Proteins - genetics
Viral Proteins - physiology
title Relevance of Lysine Snorkeling in the Outer Transmembrane Domain of Small Viral Potassium Ion Channels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A41%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relevance%20of%20Lysine%20Snorkeling%20in%20the%20Outer%20Transmembrane%20Domain%20of%20Small%20Viral%20Potassium%20Ion%20Channels&rft.jtitle=Biochemistry%20(Easton)&rft.au=Gebhardt,%20Manuela&rft.date=2012-07-17&rft.volume=51&rft.issue=28&rft.spage=5571&rft.epage=5579&rft.pages=5571-5579&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi3006016&rft_dat=%3Cproquest_cross%3E1534848040%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1534848040&rft_id=info:pmid/22734656&rfr_iscdi=true