Relevance of Lysine Snorkeling in the Outer Transmembrane Domain of Small Viral Potassium Ion Channels
Transmembrane domains (TMDs) are often flanked by Lys or Arg because they keep their aliphatic parts in the bilayer and their charged groups in the polar interface. Here we examine the relevance of this so-called “snorkeling” of a cationic amino acid, which is conserved in the outer TMD of small vir...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 2012-07, Vol.51 (28), p.5571-5579 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5579 |
---|---|
container_issue | 28 |
container_start_page | 5571 |
container_title | Biochemistry (Easton) |
container_volume | 51 |
creator | Gebhardt, Manuela Henkes, Leonhard M Tayefeh, Sascha Hertel, Brigitte Greiner, Timo Van Etten, James L Baumeister, Dirk Cosentino, Cristian Moroni, Anna Kast, Stefan M Thiel, Gerhard |
description | Transmembrane domains (TMDs) are often flanked by Lys or Arg because they keep their aliphatic parts in the bilayer and their charged groups in the polar interface. Here we examine the relevance of this so-called “snorkeling” of a cationic amino acid, which is conserved in the outer TMD of small viral K+ channels. Experimentally, snorkeling activity is not mandatory for KcvPBCV‑1 because K29 can be replaced by most of the natural amino acids without any corruption of function. Two similar channels, KcvATCV‑1 and KcvMT325, lack a cytosolic N-terminus, and neutralization of their equivalent cationic amino acids inhibits their function. To understand the variable importance of the cationic amino acids, we reanalyzed molecular dynamics simulations of KcvPBCV‑1 and N-terminally truncated mutants; the truncated mutants mimic KcvATCV‑1 and KcvMT325. Structures were analyzed with respect to membrane positioning in relation to the orientation of K29. The results indicate that the architecture of the protein (including the selectivity filter) is only weakly dependent on TMD length and protonation of K29. The penetration depth of Lys in a given protonation state is independent of the TMD architecture, which leads to a distortion of shorter proteins. The data imply that snorkeling can be important for K+ channels; however, its significance depends on the architecture of the entire TMD. The observation that the most severe N-terminal truncation causes the outer TMD to move toward the cytosolic side suggests that snorkeling becomes more relevant if TMDs are not stabilized in the membrane by other domains. |
doi_str_mv | 10.1021/bi3006016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1534848040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1534848040</sourcerecordid><originalsourceid>FETCH-LOGICAL-a383t-78ae523ff9e154329e5aba2a4746c5d75b716fd67375b47598a591d754b885f3</originalsourceid><addsrcrecordid>eNptkMtOwzAQRS0EoqWw4AeQN0iwCNixHSdLVF6VKhXRim3kpBPq4tjFTpD69xgVumI1rzNXMxehc0puKEnpbaUZIRmh2QEaUpGShBeFOERDErtJWmRkgE5CWMeSE8mP0SBNJeOZyIaoeQUDX8rWgF2Dp9ugLeC5df4DjLbvWFvcrQDP-g48XnhlQwttFSPge9eqOI5r81YZg9-0Vwa_uE6FoPsWT5zF45WyFkw4RUeNMgHOfuMILR4fFuPnZDp7mozvpoliOesSmSsQKWuaAqjgLC1AqEqlikue1WIpRSVp1iwzyWLKpShyJQoa-7zKc9GwEbrayW68--whdGWrQw3GxHtdH0oqGM95Hm2I6PUOrb0LwUNTbrxuld-WlJQ_rpZ7VyN78SvbVy0s9-SfjRG43AGqDuXa9d7GJ_8R-gYBfXzH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1534848040</pqid></control><display><type>article</type><title>Relevance of Lysine Snorkeling in the Outer Transmembrane Domain of Small Viral Potassium Ion Channels</title><source>MEDLINE</source><source>ACS Publications</source><creator>Gebhardt, Manuela ; Henkes, Leonhard M ; Tayefeh, Sascha ; Hertel, Brigitte ; Greiner, Timo ; Van Etten, James L ; Baumeister, Dirk ; Cosentino, Cristian ; Moroni, Anna ; Kast, Stefan M ; Thiel, Gerhard</creator><creatorcontrib>Gebhardt, Manuela ; Henkes, Leonhard M ; Tayefeh, Sascha ; Hertel, Brigitte ; Greiner, Timo ; Van Etten, James L ; Baumeister, Dirk ; Cosentino, Cristian ; Moroni, Anna ; Kast, Stefan M ; Thiel, Gerhard</creatorcontrib><description>Transmembrane domains (TMDs) are often flanked by Lys or Arg because they keep their aliphatic parts in the bilayer and their charged groups in the polar interface. Here we examine the relevance of this so-called “snorkeling” of a cationic amino acid, which is conserved in the outer TMD of small viral K+ channels. Experimentally, snorkeling activity is not mandatory for KcvPBCV‑1 because K29 can be replaced by most of the natural amino acids without any corruption of function. Two similar channels, KcvATCV‑1 and KcvMT325, lack a cytosolic N-terminus, and neutralization of their equivalent cationic amino acids inhibits their function. To understand the variable importance of the cationic amino acids, we reanalyzed molecular dynamics simulations of KcvPBCV‑1 and N-terminally truncated mutants; the truncated mutants mimic KcvATCV‑1 and KcvMT325. Structures were analyzed with respect to membrane positioning in relation to the orientation of K29. The results indicate that the architecture of the protein (including the selectivity filter) is only weakly dependent on TMD length and protonation of K29. The penetration depth of Lys in a given protonation state is independent of the TMD architecture, which leads to a distortion of shorter proteins. The data imply that snorkeling can be important for K+ channels; however, its significance depends on the architecture of the entire TMD. The observation that the most severe N-terminal truncation causes the outer TMD to move toward the cytosolic side suggests that snorkeling becomes more relevant if TMDs are not stabilized in the membrane by other domains.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi3006016</identifier><identifier>PMID: 22734656</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amino Acid Sequence ; Electrophysiological Phenomena ; Green Fluorescent Proteins - genetics ; HEK293 Cells ; Humans ; Lysine - chemistry ; Molecular Dynamics Simulation ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Mutation ; Potassium Channels - chemistry ; Potassium Channels - genetics ; Potassium Channels - physiology ; Protein Structure, Tertiary ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - physiology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth & development ; Saccharomyces cerevisiae - metabolism ; Viral Proteins - chemistry ; Viral Proteins - genetics ; Viral Proteins - physiology</subject><ispartof>Biochemistry (Easton), 2012-07, Vol.51 (28), p.5571-5579</ispartof><rights>Copyright © 2012 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a383t-78ae523ff9e154329e5aba2a4746c5d75b716fd67375b47598a591d754b885f3</citedby><cites>FETCH-LOGICAL-a383t-78ae523ff9e154329e5aba2a4746c5d75b716fd67375b47598a591d754b885f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bi3006016$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bi3006016$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27063,27911,27912,56725,56775</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22734656$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gebhardt, Manuela</creatorcontrib><creatorcontrib>Henkes, Leonhard M</creatorcontrib><creatorcontrib>Tayefeh, Sascha</creatorcontrib><creatorcontrib>Hertel, Brigitte</creatorcontrib><creatorcontrib>Greiner, Timo</creatorcontrib><creatorcontrib>Van Etten, James L</creatorcontrib><creatorcontrib>Baumeister, Dirk</creatorcontrib><creatorcontrib>Cosentino, Cristian</creatorcontrib><creatorcontrib>Moroni, Anna</creatorcontrib><creatorcontrib>Kast, Stefan M</creatorcontrib><creatorcontrib>Thiel, Gerhard</creatorcontrib><title>Relevance of Lysine Snorkeling in the Outer Transmembrane Domain of Small Viral Potassium Ion Channels</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>Transmembrane domains (TMDs) are often flanked by Lys or Arg because they keep their aliphatic parts in the bilayer and their charged groups in the polar interface. Here we examine the relevance of this so-called “snorkeling” of a cationic amino acid, which is conserved in the outer TMD of small viral K+ channels. Experimentally, snorkeling activity is not mandatory for KcvPBCV‑1 because K29 can be replaced by most of the natural amino acids without any corruption of function. Two similar channels, KcvATCV‑1 and KcvMT325, lack a cytosolic N-terminus, and neutralization of their equivalent cationic amino acids inhibits their function. To understand the variable importance of the cationic amino acids, we reanalyzed molecular dynamics simulations of KcvPBCV‑1 and N-terminally truncated mutants; the truncated mutants mimic KcvATCV‑1 and KcvMT325. Structures were analyzed with respect to membrane positioning in relation to the orientation of K29. The results indicate that the architecture of the protein (including the selectivity filter) is only weakly dependent on TMD length and protonation of K29. The penetration depth of Lys in a given protonation state is independent of the TMD architecture, which leads to a distortion of shorter proteins. The data imply that snorkeling can be important for K+ channels; however, its significance depends on the architecture of the entire TMD. The observation that the most severe N-terminal truncation causes the outer TMD to move toward the cytosolic side suggests that snorkeling becomes more relevant if TMDs are not stabilized in the membrane by other domains.</description><subject>Amino Acid Sequence</subject><subject>Electrophysiological Phenomena</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Lysine - chemistry</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutation</subject><subject>Potassium Channels - chemistry</subject><subject>Potassium Channels - genetics</subject><subject>Potassium Channels - physiology</subject><subject>Protein Structure, Tertiary</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - physiology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth & development</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Viral Proteins - chemistry</subject><subject>Viral Proteins - genetics</subject><subject>Viral Proteins - physiology</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkMtOwzAQRS0EoqWw4AeQN0iwCNixHSdLVF6VKhXRim3kpBPq4tjFTpD69xgVumI1rzNXMxehc0puKEnpbaUZIRmh2QEaUpGShBeFOERDErtJWmRkgE5CWMeSE8mP0SBNJeOZyIaoeQUDX8rWgF2Dp9ugLeC5df4DjLbvWFvcrQDP-g48XnhlQwttFSPge9eqOI5r81YZg9-0Vwa_uE6FoPsWT5zF45WyFkw4RUeNMgHOfuMILR4fFuPnZDp7mozvpoliOesSmSsQKWuaAqjgLC1AqEqlikue1WIpRSVp1iwzyWLKpShyJQoa-7zKc9GwEbrayW68--whdGWrQw3GxHtdH0oqGM95Hm2I6PUOrb0LwUNTbrxuld-WlJQ_rpZ7VyN78SvbVy0s9-SfjRG43AGqDuXa9d7GJ_8R-gYBfXzH</recordid><startdate>20120717</startdate><enddate>20120717</enddate><creator>Gebhardt, Manuela</creator><creator>Henkes, Leonhard M</creator><creator>Tayefeh, Sascha</creator><creator>Hertel, Brigitte</creator><creator>Greiner, Timo</creator><creator>Van Etten, James L</creator><creator>Baumeister, Dirk</creator><creator>Cosentino, Cristian</creator><creator>Moroni, Anna</creator><creator>Kast, Stefan M</creator><creator>Thiel, Gerhard</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U9</scope><scope>H94</scope></search><sort><creationdate>20120717</creationdate><title>Relevance of Lysine Snorkeling in the Outer Transmembrane Domain of Small Viral Potassium Ion Channels</title><author>Gebhardt, Manuela ; Henkes, Leonhard M ; Tayefeh, Sascha ; Hertel, Brigitte ; Greiner, Timo ; Van Etten, James L ; Baumeister, Dirk ; Cosentino, Cristian ; Moroni, Anna ; Kast, Stefan M ; Thiel, Gerhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a383t-78ae523ff9e154329e5aba2a4746c5d75b716fd67375b47598a591d754b885f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Amino Acid Sequence</topic><topic>Electrophysiological Phenomena</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Lysine - chemistry</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutation</topic><topic>Potassium Channels - chemistry</topic><topic>Potassium Channels - genetics</topic><topic>Potassium Channels - physiology</topic><topic>Protein Structure, Tertiary</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - physiology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth & development</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Viral Proteins - chemistry</topic><topic>Viral Proteins - genetics</topic><topic>Viral Proteins - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gebhardt, Manuela</creatorcontrib><creatorcontrib>Henkes, Leonhard M</creatorcontrib><creatorcontrib>Tayefeh, Sascha</creatorcontrib><creatorcontrib>Hertel, Brigitte</creatorcontrib><creatorcontrib>Greiner, Timo</creatorcontrib><creatorcontrib>Van Etten, James L</creatorcontrib><creatorcontrib>Baumeister, Dirk</creatorcontrib><creatorcontrib>Cosentino, Cristian</creatorcontrib><creatorcontrib>Moroni, Anna</creatorcontrib><creatorcontrib>Kast, Stefan M</creatorcontrib><creatorcontrib>Thiel, Gerhard</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gebhardt, Manuela</au><au>Henkes, Leonhard M</au><au>Tayefeh, Sascha</au><au>Hertel, Brigitte</au><au>Greiner, Timo</au><au>Van Etten, James L</au><au>Baumeister, Dirk</au><au>Cosentino, Cristian</au><au>Moroni, Anna</au><au>Kast, Stefan M</au><au>Thiel, Gerhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relevance of Lysine Snorkeling in the Outer Transmembrane Domain of Small Viral Potassium Ion Channels</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2012-07-17</date><risdate>2012</risdate><volume>51</volume><issue>28</issue><spage>5571</spage><epage>5579</epage><pages>5571-5579</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>Transmembrane domains (TMDs) are often flanked by Lys or Arg because they keep their aliphatic parts in the bilayer and their charged groups in the polar interface. Here we examine the relevance of this so-called “snorkeling” of a cationic amino acid, which is conserved in the outer TMD of small viral K+ channels. Experimentally, snorkeling activity is not mandatory for KcvPBCV‑1 because K29 can be replaced by most of the natural amino acids without any corruption of function. Two similar channels, KcvATCV‑1 and KcvMT325, lack a cytosolic N-terminus, and neutralization of their equivalent cationic amino acids inhibits their function. To understand the variable importance of the cationic amino acids, we reanalyzed molecular dynamics simulations of KcvPBCV‑1 and N-terminally truncated mutants; the truncated mutants mimic KcvATCV‑1 and KcvMT325. Structures were analyzed with respect to membrane positioning in relation to the orientation of K29. The results indicate that the architecture of the protein (including the selectivity filter) is only weakly dependent on TMD length and protonation of K29. The penetration depth of Lys in a given protonation state is independent of the TMD architecture, which leads to a distortion of shorter proteins. The data imply that snorkeling can be important for K+ channels; however, its significance depends on the architecture of the entire TMD. The observation that the most severe N-terminal truncation causes the outer TMD to move toward the cytosolic side suggests that snorkeling becomes more relevant if TMDs are not stabilized in the membrane by other domains.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>22734656</pmid><doi>10.1021/bi3006016</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-2960 |
ispartof | Biochemistry (Easton), 2012-07, Vol.51 (28), p.5571-5579 |
issn | 0006-2960 1520-4995 |
language | eng |
recordid | cdi_proquest_miscellaneous_1534848040 |
source | MEDLINE; ACS Publications |
subjects | Amino Acid Sequence Electrophysiological Phenomena Green Fluorescent Proteins - genetics HEK293 Cells Humans Lysine - chemistry Molecular Dynamics Simulation Molecular Sequence Data Mutagenesis, Site-Directed Mutation Potassium Channels - chemistry Potassium Channels - genetics Potassium Channels - physiology Protein Structure, Tertiary Recombinant Fusion Proteins - genetics Recombinant Fusion Proteins - physiology Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - growth & development Saccharomyces cerevisiae - metabolism Viral Proteins - chemistry Viral Proteins - genetics Viral Proteins - physiology |
title | Relevance of Lysine Snorkeling in the Outer Transmembrane Domain of Small Viral Potassium Ion Channels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A41%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relevance%20of%20Lysine%20Snorkeling%20in%20the%20Outer%20Transmembrane%20Domain%20of%20Small%20Viral%20Potassium%20Ion%20Channels&rft.jtitle=Biochemistry%20(Easton)&rft.au=Gebhardt,%20Manuela&rft.date=2012-07-17&rft.volume=51&rft.issue=28&rft.spage=5571&rft.epage=5579&rft.pages=5571-5579&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi3006016&rft_dat=%3Cproquest_cross%3E1534848040%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1534848040&rft_id=info:pmid/22734656&rfr_iscdi=true |