Strategies investigation in using artificial neural network for landslide susceptibility mapping: application to a Sicilian catchment

Susceptibility assessment of areas prone to landsliding remains one of the most useful approaches in landslide hazard analysis. The key point of such analysis is the correlation between the physical phenomenon and its triggering factors based on past observations. Many methods have been developed in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydroinformatics 2014-03, Vol.16 (2), p.502-515
Hauptverfasser: ARNONE, Elisa, FRANCIPANE, Antonio, NOTO, Leonardo V, SCARBACI, Antonino, LA LOGGIA, Goffredo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 515
container_issue 2
container_start_page 502
container_title Journal of hydroinformatics
container_volume 16
creator ARNONE, Elisa
FRANCIPANE, Antonio
NOTO, Leonardo V
SCARBACI, Antonino
LA LOGGIA, Goffredo
description Susceptibility assessment of areas prone to landsliding remains one of the most useful approaches in landslide hazard analysis. The key point of such analysis is the correlation between the physical phenomenon and its triggering factors based on past observations. Many methods have been developed in the scientific literature to capture and model this correlation, usually within a geographic information system (GIS) framework. Among these, the use of neural networks, in particular the multi-layer perceptron (MLP) networks, has provided successful results. A successful application of the MLP method to a basin area requires the definition of different model strategies, such as the sample selection for the training phase or the design of the network structure. The present study investigates the effects of these strategies on the development of landslide susceptibility maps by applying different model configurations to a small basin located in northeastern Sicily (Italy), where a number of historical slope failure events have been documented over the years. Model performances and their comparison are evaluated using specific metrics.
doi_str_mv 10.2166/hydro.2013.191
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1534844552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1943109466</sourcerecordid><originalsourceid>FETCH-LOGICAL-a393t-1bcd22bdc13206494b08f37f58295ae74bd88d3b0fe45fa18d9b3c6ea7f17d533</originalsourceid><addsrcrecordid>eNpdUU2LFDEUbETBdfXqOSCClx7zknQ67U0Wv2DBw-q5Sedj9q2ZpE3SyvwA_7fZmcWDp3rvUVXUo7ruJdAdAynf3h5tTjtGge9ggkfdBQg59DBy8fg0i34EAU-7Z6XcUcqAK7jo_tzUrKvboysE4y9XKu51xRTbRraCcU90rujRoA4kui2foP5O-QfxKZOgoy0BrSNlK8atFRcMWI_koNe1yd-RhgHN2bQmoslNMwuoI2lHc3twsT7vnngdinvxgJfd948fvl197q-_fvpy9f6613zitYfFWMYWa4AzKsUkFqo8H_2g2DRoN4rFKmX5Qr0Tg9eg7LRwI50ePYx24Pyye3P2XXP6ubVn5wO20KE94dJWZhi4UEIMA2vUV_9R79KWY0s3wyQ40ElI2Vi7M8vkVEp2fl4zHnQ-zkDn-1bmUyvzfStNB03w-sFWF6ODzzoaLP9UTAmp5MT4X659kR8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1943109466</pqid></control><display><type>article</type><title>Strategies investigation in using artificial neural network for landslide susceptibility mapping: application to a Sicilian catchment</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>ARNONE, Elisa ; FRANCIPANE, Antonio ; NOTO, Leonardo V ; SCARBACI, Antonino ; LA LOGGIA, Goffredo</creator><creatorcontrib>ARNONE, Elisa ; FRANCIPANE, Antonio ; NOTO, Leonardo V ; SCARBACI, Antonino ; LA LOGGIA, Goffredo</creatorcontrib><description>Susceptibility assessment of areas prone to landsliding remains one of the most useful approaches in landslide hazard analysis. The key point of such analysis is the correlation between the physical phenomenon and its triggering factors based on past observations. Many methods have been developed in the scientific literature to capture and model this correlation, usually within a geographic information system (GIS) framework. Among these, the use of neural networks, in particular the multi-layer perceptron (MLP) networks, has provided successful results. A successful application of the MLP method to a basin area requires the definition of different model strategies, such as the sample selection for the training phase or the design of the network structure. The present study investigates the effects of these strategies on the development of landslide susceptibility maps by applying different model configurations to a small basin located in northeastern Sicily (Italy), where a number of historical slope failure events have been documented over the years. Model performances and their comparison are evaluated using specific metrics.</description><identifier>ISSN: 1464-7141</identifier><identifier>EISSN: 1465-1734</identifier><identifier>DOI: 10.2166/hydro.2013.191</identifier><language>eng</language><publisher>London: IWA Publishing</publisher><subject>Artificial neural networks ; Catchment area ; Correlation ; Correlation analysis ; Earth sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Exact sciences and technology ; Frameworks ; Geographic information systems ; Geographical information systems ; Geological hazards ; Hazard assessment ; Information systems ; Landslides ; Marine and continental quaternary ; Natural hazards: prediction, damages, etc ; Neural networks ; Remote sensing ; Satellite navigation systems ; Surficial geology ; Training</subject><ispartof>Journal of hydroinformatics, 2014-03, Vol.16 (2), p.502-515</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright IWA Publishing Mar 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a393t-1bcd22bdc13206494b08f37f58295ae74bd88d3b0fe45fa18d9b3c6ea7f17d533</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28468692$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>ARNONE, Elisa</creatorcontrib><creatorcontrib>FRANCIPANE, Antonio</creatorcontrib><creatorcontrib>NOTO, Leonardo V</creatorcontrib><creatorcontrib>SCARBACI, Antonino</creatorcontrib><creatorcontrib>LA LOGGIA, Goffredo</creatorcontrib><title>Strategies investigation in using artificial neural network for landslide susceptibility mapping: application to a Sicilian catchment</title><title>Journal of hydroinformatics</title><description>Susceptibility assessment of areas prone to landsliding remains one of the most useful approaches in landslide hazard analysis. The key point of such analysis is the correlation between the physical phenomenon and its triggering factors based on past observations. Many methods have been developed in the scientific literature to capture and model this correlation, usually within a geographic information system (GIS) framework. Among these, the use of neural networks, in particular the multi-layer perceptron (MLP) networks, has provided successful results. A successful application of the MLP method to a basin area requires the definition of different model strategies, such as the sample selection for the training phase or the design of the network structure. The present study investigates the effects of these strategies on the development of landslide susceptibility maps by applying different model configurations to a small basin located in northeastern Sicily (Italy), where a number of historical slope failure events have been documented over the years. Model performances and their comparison are evaluated using specific metrics.</description><subject>Artificial neural networks</subject><subject>Catchment area</subject><subject>Correlation</subject><subject>Correlation analysis</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Exact sciences and technology</subject><subject>Frameworks</subject><subject>Geographic information systems</subject><subject>Geographical information systems</subject><subject>Geological hazards</subject><subject>Hazard assessment</subject><subject>Information systems</subject><subject>Landslides</subject><subject>Marine and continental quaternary</subject><subject>Natural hazards: prediction, damages, etc</subject><subject>Neural networks</subject><subject>Remote sensing</subject><subject>Satellite navigation systems</subject><subject>Surficial geology</subject><subject>Training</subject><issn>1464-7141</issn><issn>1465-1734</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdUU2LFDEUbETBdfXqOSCClx7zknQ67U0Wv2DBw-q5Sedj9q2ZpE3SyvwA_7fZmcWDp3rvUVXUo7ruJdAdAynf3h5tTjtGge9ggkfdBQg59DBy8fg0i34EAU-7Z6XcUcqAK7jo_tzUrKvboysE4y9XKu51xRTbRraCcU90rujRoA4kui2foP5O-QfxKZOgoy0BrSNlK8atFRcMWI_koNe1yd-RhgHN2bQmoslNMwuoI2lHc3twsT7vnngdinvxgJfd948fvl197q-_fvpy9f6613zitYfFWMYWa4AzKsUkFqo8H_2g2DRoN4rFKmX5Qr0Tg9eg7LRwI50ePYx24Pyye3P2XXP6ubVn5wO20KE94dJWZhi4UEIMA2vUV_9R79KWY0s3wyQ40ElI2Vi7M8vkVEp2fl4zHnQ-zkDn-1bmUyvzfStNB03w-sFWF6ODzzoaLP9UTAmp5MT4X659kR8</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>ARNONE, Elisa</creator><creator>FRANCIPANE, Antonio</creator><creator>NOTO, Leonardo V</creator><creator>SCARBACI, Antonino</creator><creator>LA LOGGIA, Goffredo</creator><general>IWA Publishing</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>7TG</scope><scope>H97</scope><scope>KL.</scope></search><sort><creationdate>20140301</creationdate><title>Strategies investigation in using artificial neural network for landslide susceptibility mapping: application to a Sicilian catchment</title><author>ARNONE, Elisa ; FRANCIPANE, Antonio ; NOTO, Leonardo V ; SCARBACI, Antonino ; LA LOGGIA, Goffredo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a393t-1bcd22bdc13206494b08f37f58295ae74bd88d3b0fe45fa18d9b3c6ea7f17d533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Artificial neural networks</topic><topic>Catchment area</topic><topic>Correlation</topic><topic>Correlation analysis</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Exact sciences and technology</topic><topic>Frameworks</topic><topic>Geographic information systems</topic><topic>Geographical information systems</topic><topic>Geological hazards</topic><topic>Hazard assessment</topic><topic>Information systems</topic><topic>Landslides</topic><topic>Marine and continental quaternary</topic><topic>Natural hazards: prediction, damages, etc</topic><topic>Neural networks</topic><topic>Remote sensing</topic><topic>Satellite navigation systems</topic><topic>Surficial geology</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ARNONE, Elisa</creatorcontrib><creatorcontrib>FRANCIPANE, Antonio</creatorcontrib><creatorcontrib>NOTO, Leonardo V</creatorcontrib><creatorcontrib>SCARBACI, Antonino</creatorcontrib><creatorcontrib>LA LOGGIA, Goffredo</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of hydroinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ARNONE, Elisa</au><au>FRANCIPANE, Antonio</au><au>NOTO, Leonardo V</au><au>SCARBACI, Antonino</au><au>LA LOGGIA, Goffredo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strategies investigation in using artificial neural network for landslide susceptibility mapping: application to a Sicilian catchment</atitle><jtitle>Journal of hydroinformatics</jtitle><date>2014-03-01</date><risdate>2014</risdate><volume>16</volume><issue>2</issue><spage>502</spage><epage>515</epage><pages>502-515</pages><issn>1464-7141</issn><eissn>1465-1734</eissn><abstract>Susceptibility assessment of areas prone to landsliding remains one of the most useful approaches in landslide hazard analysis. The key point of such analysis is the correlation between the physical phenomenon and its triggering factors based on past observations. Many methods have been developed in the scientific literature to capture and model this correlation, usually within a geographic information system (GIS) framework. Among these, the use of neural networks, in particular the multi-layer perceptron (MLP) networks, has provided successful results. A successful application of the MLP method to a basin area requires the definition of different model strategies, such as the sample selection for the training phase or the design of the network structure. The present study investigates the effects of these strategies on the development of landslide susceptibility maps by applying different model configurations to a small basin located in northeastern Sicily (Italy), where a number of historical slope failure events have been documented over the years. Model performances and their comparison are evaluated using specific metrics.</abstract><cop>London</cop><pub>IWA Publishing</pub><doi>10.2166/hydro.2013.191</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1464-7141
ispartof Journal of hydroinformatics, 2014-03, Vol.16 (2), p.502-515
issn 1464-7141
1465-1734
language eng
recordid cdi_proquest_miscellaneous_1534844552
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Artificial neural networks
Catchment area
Correlation
Correlation analysis
Earth sciences
Earth, ocean, space
Engineering and environment geology. Geothermics
Exact sciences and technology
Frameworks
Geographic information systems
Geographical information systems
Geological hazards
Hazard assessment
Information systems
Landslides
Marine and continental quaternary
Natural hazards: prediction, damages, etc
Neural networks
Remote sensing
Satellite navigation systems
Surficial geology
Training
title Strategies investigation in using artificial neural network for landslide susceptibility mapping: application to a Sicilian catchment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A25%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strategies%20investigation%20in%20using%20artificial%20neural%20network%20for%20landslide%20susceptibility%20mapping:%20application%20to%20a%20Sicilian%20catchment&rft.jtitle=Journal%20of%20hydroinformatics&rft.au=ARNONE,%20Elisa&rft.date=2014-03-01&rft.volume=16&rft.issue=2&rft.spage=502&rft.epage=515&rft.pages=502-515&rft.issn=1464-7141&rft.eissn=1465-1734&rft_id=info:doi/10.2166/hydro.2013.191&rft_dat=%3Cproquest_cross%3E1943109466%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1943109466&rft_id=info:pmid/&rfr_iscdi=true