Adaptive brain emotional decayed learning for online prediction of geomagnetic activity indices

In this paper we propose adaptive brain-inspired emotional decayed learning to predict Kp, AE and Dst indices that characterize the chaotic activity of the earth's magnetosphere by their extreme lows and highs. In mammalian brain, the limbic system processes emotional stimulus and consists of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurocomputing (Amsterdam) 2014-02, Vol.126, p.188-196
Hauptverfasser: Lotfi, Ehsan, Akbarzadeh-T., M.-R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 196
container_issue
container_start_page 188
container_title Neurocomputing (Amsterdam)
container_volume 126
creator Lotfi, Ehsan
Akbarzadeh-T., M.-R.
description In this paper we propose adaptive brain-inspired emotional decayed learning to predict Kp, AE and Dst indices that characterize the chaotic activity of the earth's magnetosphere by their extreme lows and highs. In mammalian brain, the limbic system processes emotional stimulus and consists of two main components: Amygdala and Orbitofrontal Cortex (OFC). Here, we propose a learning algorithm for the neural basis computational model of Amygdala–OFC in a supervised manner and consider a decay rate in Amygdala learning rule. This added decay rate has in fact a neurobiological basis and yields to better learning and adaptive decision making as illustrated here. In the experimental studies, various comparisons are made between the proposed method named ADBEL, Multilayer Perceptron (MLP), Adaptive Neuro-Fuzzy Inference System (ANFIS) and Locally Linear Neuro-Fuzzy (LLNF). The main features of the presented predictor are the higher accuracy at all points especially at critical points, lower computational complexity and adaptive training. Hence, the presented model can be utilized in adaptive online prediction problems.
doi_str_mv 10.1016/j.neucom.2013.02.040
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1534831210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925231213005080</els_id><sourcerecordid>1534831210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-cee498d9dc8c8497ec5c457c890b6630c53ca43df01302e2451ff4c7d3ae1f4b3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKv_wEWWbmbMa14boYgvKLjRdUhv7pSUmWRMpoX-e1Pq2tWFy3cOnI-Qe85Kznj9uCs97iGMpWBclkyUTLELsuBtI4pWtPUlWbBOVIWQXFyTm5R2jPGGi25B9MqaaXYHpJtonKc4htkFbwZqEcwRLR3QRO_8lvYh0uAH55FOEa2DE0hDT7cYRrP1ODugJn8Pbj5S5zOB6ZZc9WZIePd3l-T79eXr-b1Yf759PK_WBUjZzQUgqq61nYUWWtU1CBWoqoG2Y5u6lgwqCUZJ2-eBTKBQFe97BY2VBnmvNnJJHs69Uww_e0yzHl0CHAbjMeyT5pVUbZ7PWUbVGYUYUorY6ym60cSj5kyffOqdPvvUJ5-aCZ195tjTOYZ5xsFh1AkcesgmIsKsbXD_F_wCYRWCRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1534831210</pqid></control><display><type>article</type><title>Adaptive brain emotional decayed learning for online prediction of geomagnetic activity indices</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Lotfi, Ehsan ; Akbarzadeh-T., M.-R.</creator><creatorcontrib>Lotfi, Ehsan ; Akbarzadeh-T., M.-R.</creatorcontrib><description>In this paper we propose adaptive brain-inspired emotional decayed learning to predict Kp, AE and Dst indices that characterize the chaotic activity of the earth's magnetosphere by their extreme lows and highs. In mammalian brain, the limbic system processes emotional stimulus and consists of two main components: Amygdala and Orbitofrontal Cortex (OFC). Here, we propose a learning algorithm for the neural basis computational model of Amygdala–OFC in a supervised manner and consider a decay rate in Amygdala learning rule. This added decay rate has in fact a neurobiological basis and yields to better learning and adaptive decision making as illustrated here. In the experimental studies, various comparisons are made between the proposed method named ADBEL, Multilayer Perceptron (MLP), Adaptive Neuro-Fuzzy Inference System (ANFIS) and Locally Linear Neuro-Fuzzy (LLNF). The main features of the presented predictor are the higher accuracy at all points especially at critical points, lower computational complexity and adaptive training. Hence, the presented model can be utilized in adaptive online prediction problems.</description><identifier>ISSN: 0925-2312</identifier><identifier>EISSN: 1872-8286</identifier><identifier>DOI: 10.1016/j.neucom.2013.02.040</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Adaptive BEL ; Amygdala ; BELBIC ; Long-term forgetting ; Online learning ; Solar winds</subject><ispartof>Neurocomputing (Amsterdam), 2014-02, Vol.126, p.188-196</ispartof><rights>2013 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-cee498d9dc8c8497ec5c457c890b6630c53ca43df01302e2451ff4c7d3ae1f4b3</citedby><cites>FETCH-LOGICAL-c339t-cee498d9dc8c8497ec5c457c890b6630c53ca43df01302e2451ff4c7d3ae1f4b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neucom.2013.02.040$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Lotfi, Ehsan</creatorcontrib><creatorcontrib>Akbarzadeh-T., M.-R.</creatorcontrib><title>Adaptive brain emotional decayed learning for online prediction of geomagnetic activity indices</title><title>Neurocomputing (Amsterdam)</title><description>In this paper we propose adaptive brain-inspired emotional decayed learning to predict Kp, AE and Dst indices that characterize the chaotic activity of the earth's magnetosphere by their extreme lows and highs. In mammalian brain, the limbic system processes emotional stimulus and consists of two main components: Amygdala and Orbitofrontal Cortex (OFC). Here, we propose a learning algorithm for the neural basis computational model of Amygdala–OFC in a supervised manner and consider a decay rate in Amygdala learning rule. This added decay rate has in fact a neurobiological basis and yields to better learning and adaptive decision making as illustrated here. In the experimental studies, various comparisons are made between the proposed method named ADBEL, Multilayer Perceptron (MLP), Adaptive Neuro-Fuzzy Inference System (ANFIS) and Locally Linear Neuro-Fuzzy (LLNF). The main features of the presented predictor are the higher accuracy at all points especially at critical points, lower computational complexity and adaptive training. Hence, the presented model can be utilized in adaptive online prediction problems.</description><subject>Adaptive BEL</subject><subject>Amygdala</subject><subject>BELBIC</subject><subject>Long-term forgetting</subject><subject>Online learning</subject><subject>Solar winds</subject><issn>0925-2312</issn><issn>1872-8286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKv_wEWWbmbMa14boYgvKLjRdUhv7pSUmWRMpoX-e1Pq2tWFy3cOnI-Qe85Kznj9uCs97iGMpWBclkyUTLELsuBtI4pWtPUlWbBOVIWQXFyTm5R2jPGGi25B9MqaaXYHpJtonKc4htkFbwZqEcwRLR3QRO_8lvYh0uAH55FOEa2DE0hDT7cYRrP1ODugJn8Pbj5S5zOB6ZZc9WZIePd3l-T79eXr-b1Yf759PK_WBUjZzQUgqq61nYUWWtU1CBWoqoG2Y5u6lgwqCUZJ2-eBTKBQFe97BY2VBnmvNnJJHs69Uww_e0yzHl0CHAbjMeyT5pVUbZ7PWUbVGYUYUorY6ym60cSj5kyffOqdPvvUJ5-aCZ195tjTOYZ5xsFh1AkcesgmIsKsbXD_F_wCYRWCRw</recordid><startdate>20140227</startdate><enddate>20140227</enddate><creator>Lotfi, Ehsan</creator><creator>Akbarzadeh-T., M.-R.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope></search><sort><creationdate>20140227</creationdate><title>Adaptive brain emotional decayed learning for online prediction of geomagnetic activity indices</title><author>Lotfi, Ehsan ; Akbarzadeh-T., M.-R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-cee498d9dc8c8497ec5c457c890b6630c53ca43df01302e2451ff4c7d3ae1f4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adaptive BEL</topic><topic>Amygdala</topic><topic>BELBIC</topic><topic>Long-term forgetting</topic><topic>Online learning</topic><topic>Solar winds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lotfi, Ehsan</creatorcontrib><creatorcontrib>Akbarzadeh-T., M.-R.</creatorcontrib><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><jtitle>Neurocomputing (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lotfi, Ehsan</au><au>Akbarzadeh-T., M.-R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive brain emotional decayed learning for online prediction of geomagnetic activity indices</atitle><jtitle>Neurocomputing (Amsterdam)</jtitle><date>2014-02-27</date><risdate>2014</risdate><volume>126</volume><spage>188</spage><epage>196</epage><pages>188-196</pages><issn>0925-2312</issn><eissn>1872-8286</eissn><abstract>In this paper we propose adaptive brain-inspired emotional decayed learning to predict Kp, AE and Dst indices that characterize the chaotic activity of the earth's magnetosphere by their extreme lows and highs. In mammalian brain, the limbic system processes emotional stimulus and consists of two main components: Amygdala and Orbitofrontal Cortex (OFC). Here, we propose a learning algorithm for the neural basis computational model of Amygdala–OFC in a supervised manner and consider a decay rate in Amygdala learning rule. This added decay rate has in fact a neurobiological basis and yields to better learning and adaptive decision making as illustrated here. In the experimental studies, various comparisons are made between the proposed method named ADBEL, Multilayer Perceptron (MLP), Adaptive Neuro-Fuzzy Inference System (ANFIS) and Locally Linear Neuro-Fuzzy (LLNF). The main features of the presented predictor are the higher accuracy at all points especially at critical points, lower computational complexity and adaptive training. Hence, the presented model can be utilized in adaptive online prediction problems.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.neucom.2013.02.040</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-2312
ispartof Neurocomputing (Amsterdam), 2014-02, Vol.126, p.188-196
issn 0925-2312
1872-8286
language eng
recordid cdi_proquest_miscellaneous_1534831210
source Elsevier ScienceDirect Journals Complete
subjects Adaptive BEL
Amygdala
BELBIC
Long-term forgetting
Online learning
Solar winds
title Adaptive brain emotional decayed learning for online prediction of geomagnetic activity indices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T07%3A56%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20brain%20emotional%20decayed%20learning%20for%20online%20prediction%20of%20geomagnetic%20activity%20indices&rft.jtitle=Neurocomputing%20(Amsterdam)&rft.au=Lotfi,%20Ehsan&rft.date=2014-02-27&rft.volume=126&rft.spage=188&rft.epage=196&rft.pages=188-196&rft.issn=0925-2312&rft.eissn=1872-8286&rft_id=info:doi/10.1016/j.neucom.2013.02.040&rft_dat=%3Cproquest_cross%3E1534831210%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1534831210&rft_id=info:pmid/&rft_els_id=S0925231213005080&rfr_iscdi=true