Secondary Metabolites of the Sponge-Derived Fungus Acremonium persicinum
This study reports the isolation and characterization of six new acremine metabolites, 5-chloroacremine A (4), 5-chloroacremine H (5), and acremines O (6), P (7), Q (8), and R (9), together with the known acremines A (1), F (2), and N (3) from the fungus Acremonium persicinum cultured from the marin...
Gespeichert in:
Veröffentlicht in: | Journal of natural products (Washington, D.C.) D.C.), 2013-08, Vol.76 (8), p.1432-1440 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1440 |
---|---|
container_issue | 8 |
container_start_page | 1432 |
container_title | Journal of natural products (Washington, D.C.) |
container_volume | 76 |
creator | Suciati Fraser, James A Lambert, Lynette K Pierens, Gregory K Bernhardt, Paul V Garson, Mary J |
description | This study reports the isolation and characterization of six new acremine metabolites, 5-chloroacremine A (4), 5-chloroacremine H (5), and acremines O (6), P (7), Q (8), and R (9), together with the known acremines A (1), F (2), and N (3) from the fungus Acremonium persicinum cultured from the marine sponge Anomoianthella rubra. The relative configuration of acremine F (2) was determined by analyses of proton coupling constant values and NOESY data, and the absolute configuration confirmed as (1S, 4S, 6R) by X-ray crystallographic analysis of the borate ester derivative 15. Acremines O, P, and R were each shown to be of 8R configuration by 1H NMR analyses of MPA esters. The relative configurations suggested for acremines P and Q were each deduced by molecular modeling together with NOESY and coupling constant data. The 3 J H–C values in acremine P were measured using the pulse sequence EXSIDE, and the observed 3 J H8–C4 of 5.4 Hz and small 3 J H–C values ( |
doi_str_mv | 10.1021/np4002114 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1534829742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1534829742</sourcerecordid><originalsourceid>FETCH-LOGICAL-a449t-b473068be2cfeee49092fb71a7b949ac4493afffc1a7b7060eb97275c606ade33</originalsourceid><addsrcrecordid>eNqF0E9LwzAYx_EgipvTg29AehH0UM2_Ns1xTOeEiYfpuaTpk9nRNjVpBN-9HZs7CZ4eCB9-hC9ClwTfEUzJfdtxPFzCj9CYJBTHKabJMRpjkrKYZSkfoTPvNxhjhmVyikaUZRnjjI7RYgXatqVy39EL9KqwddWDj6yJ-g-IVp1t1xA_gKu-oIzmoV0HH021g8a2VWiiDpyvdNWG5hydGFV7uNjfCXqfP77NFvHy9el5Nl3GinPZxwUXDKdZAVQbAOASS2oKQZQoJJdKD4gpY4zevgicYiikoCLRKU5VCYxN0M1ut3P2M4Dv86byGupatWCDz0nCeEal4PR_yqkQww9SMdDbHdXOeu_A5J2rmqFKTnC-bZwfGg_2aj8bigbKg_yNOoDrHVDa5xsbXDsE-WPoB8Sbgc8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1427749067</pqid></control><display><type>article</type><title>Secondary Metabolites of the Sponge-Derived Fungus Acremonium persicinum</title><source>ACS Publications</source><source>MEDLINE</source><creator>Suciati ; Fraser, James A ; Lambert, Lynette K ; Pierens, Gregory K ; Bernhardt, Paul V ; Garson, Mary J</creator><creatorcontrib>Suciati ; Fraser, James A ; Lambert, Lynette K ; Pierens, Gregory K ; Bernhardt, Paul V ; Garson, Mary J</creatorcontrib><description>This study reports the isolation and characterization of six new acremine metabolites, 5-chloroacremine A (4), 5-chloroacremine H (5), and acremines O (6), P (7), Q (8), and R (9), together with the known acremines A (1), F (2), and N (3) from the fungus Acremonium persicinum cultured from the marine sponge Anomoianthella rubra. The relative configuration of acremine F (2) was determined by analyses of proton coupling constant values and NOESY data, and the absolute configuration confirmed as (1S, 4S, 6R) by X-ray crystallographic analysis of the borate ester derivative 15. Acremines O, P, and R were each shown to be of 8R configuration by 1H NMR analyses of MPA esters. The relative configurations suggested for acremines P and Q were each deduced by molecular modeling together with NOESY and coupling constant data. The 3 J H–C values in acremine P were measured using the pulse sequence EXSIDE, and the observed 3 J H8–C4 of 5.4 Hz and small 3 J H–C values (<1.5 Hz) from H-8 to C-10 and C-11 were fully consistent with stereoisomer 7a. For acremine Q, NOESY data combined with molecular modeling established the preferred diastereomer 8a.</description><identifier>ISSN: 0163-3864</identifier><identifier>EISSN: 1520-6025</identifier><identifier>DOI: 10.1021/np4002114</identifier><identifier>PMID: 23883432</identifier><language>eng</language><publisher>United States: American Chemical Society and American Society of Pharmacognosy</publisher><subject>Acremonium - chemistry ; Acremonium persicinum ; Animals ; Anomoianthella rubra ; Crystallography, X-Ray ; Marine ; Molecular Conformation ; Molecular Structure ; Nuclear Magnetic Resonance, Biomolecular ; Oceans and Seas ; Porifera - microbiology ; Terpenes - chemistry ; Terpenes - isolation & purification</subject><ispartof>Journal of natural products (Washington, D.C.), 2013-08, Vol.76 (8), p.1432-1440</ispartof><rights>Copyright © American Chemical Society and American Society of Pharmacognosy</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a449t-b473068be2cfeee49092fb71a7b949ac4493afffc1a7b7060eb97275c606ade33</citedby><cites>FETCH-LOGICAL-a449t-b473068be2cfeee49092fb71a7b949ac4493afffc1a7b7060eb97275c606ade33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/np4002114$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/np4002114$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23883432$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Suciati</creatorcontrib><creatorcontrib>Fraser, James A</creatorcontrib><creatorcontrib>Lambert, Lynette K</creatorcontrib><creatorcontrib>Pierens, Gregory K</creatorcontrib><creatorcontrib>Bernhardt, Paul V</creatorcontrib><creatorcontrib>Garson, Mary J</creatorcontrib><title>Secondary Metabolites of the Sponge-Derived Fungus Acremonium persicinum</title><title>Journal of natural products (Washington, D.C.)</title><addtitle>J. Nat. Prod</addtitle><description>This study reports the isolation and characterization of six new acremine metabolites, 5-chloroacremine A (4), 5-chloroacremine H (5), and acremines O (6), P (7), Q (8), and R (9), together with the known acremines A (1), F (2), and N (3) from the fungus Acremonium persicinum cultured from the marine sponge Anomoianthella rubra. The relative configuration of acremine F (2) was determined by analyses of proton coupling constant values and NOESY data, and the absolute configuration confirmed as (1S, 4S, 6R) by X-ray crystallographic analysis of the borate ester derivative 15. Acremines O, P, and R were each shown to be of 8R configuration by 1H NMR analyses of MPA esters. The relative configurations suggested for acremines P and Q were each deduced by molecular modeling together with NOESY and coupling constant data. The 3 J H–C values in acremine P were measured using the pulse sequence EXSIDE, and the observed 3 J H8–C4 of 5.4 Hz and small 3 J H–C values (<1.5 Hz) from H-8 to C-10 and C-11 were fully consistent with stereoisomer 7a. For acremine Q, NOESY data combined with molecular modeling established the preferred diastereomer 8a.</description><subject>Acremonium - chemistry</subject><subject>Acremonium persicinum</subject><subject>Animals</subject><subject>Anomoianthella rubra</subject><subject>Crystallography, X-Ray</subject><subject>Marine</subject><subject>Molecular Conformation</subject><subject>Molecular Structure</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><subject>Oceans and Seas</subject><subject>Porifera - microbiology</subject><subject>Terpenes - chemistry</subject><subject>Terpenes - isolation & purification</subject><issn>0163-3864</issn><issn>1520-6025</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0E9LwzAYx_EgipvTg29AehH0UM2_Ns1xTOeEiYfpuaTpk9nRNjVpBN-9HZs7CZ4eCB9-hC9ClwTfEUzJfdtxPFzCj9CYJBTHKabJMRpjkrKYZSkfoTPvNxhjhmVyikaUZRnjjI7RYgXatqVy39EL9KqwddWDj6yJ-g-IVp1t1xA_gKu-oIzmoV0HH021g8a2VWiiDpyvdNWG5hydGFV7uNjfCXqfP77NFvHy9el5Nl3GinPZxwUXDKdZAVQbAOASS2oKQZQoJJdKD4gpY4zevgicYiikoCLRKU5VCYxN0M1ut3P2M4Dv86byGupatWCDz0nCeEal4PR_yqkQww9SMdDbHdXOeu_A5J2rmqFKTnC-bZwfGg_2aj8bigbKg_yNOoDrHVDa5xsbXDsE-WPoB8Sbgc8</recordid><startdate>20130823</startdate><enddate>20130823</enddate><creator>Suciati</creator><creator>Fraser, James A</creator><creator>Lambert, Lynette K</creator><creator>Pierens, Gregory K</creator><creator>Bernhardt, Paul V</creator><creator>Garson, Mary J</creator><general>American Chemical Society and American Society of Pharmacognosy</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H98</scope><scope>H99</scope><scope>L.F</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>20130823</creationdate><title>Secondary Metabolites of the Sponge-Derived Fungus Acremonium persicinum</title><author>Suciati ; Fraser, James A ; Lambert, Lynette K ; Pierens, Gregory K ; Bernhardt, Paul V ; Garson, Mary J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a449t-b473068be2cfeee49092fb71a7b949ac4493afffc1a7b7060eb97275c606ade33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acremonium - chemistry</topic><topic>Acremonium persicinum</topic><topic>Animals</topic><topic>Anomoianthella rubra</topic><topic>Crystallography, X-Ray</topic><topic>Marine</topic><topic>Molecular Conformation</topic><topic>Molecular Structure</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><topic>Oceans and Seas</topic><topic>Porifera - microbiology</topic><topic>Terpenes - chemistry</topic><topic>Terpenes - isolation & purification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suciati</creatorcontrib><creatorcontrib>Fraser, James A</creatorcontrib><creatorcontrib>Lambert, Lynette K</creatorcontrib><creatorcontrib>Pierens, Gregory K</creatorcontrib><creatorcontrib>Bernhardt, Paul V</creatorcontrib><creatorcontrib>Garson, Mary J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of natural products (Washington, D.C.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suciati</au><au>Fraser, James A</au><au>Lambert, Lynette K</au><au>Pierens, Gregory K</au><au>Bernhardt, Paul V</au><au>Garson, Mary J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Secondary Metabolites of the Sponge-Derived Fungus Acremonium persicinum</atitle><jtitle>Journal of natural products (Washington, D.C.)</jtitle><addtitle>J. Nat. Prod</addtitle><date>2013-08-23</date><risdate>2013</risdate><volume>76</volume><issue>8</issue><spage>1432</spage><epage>1440</epage><pages>1432-1440</pages><issn>0163-3864</issn><eissn>1520-6025</eissn><abstract>This study reports the isolation and characterization of six new acremine metabolites, 5-chloroacremine A (4), 5-chloroacremine H (5), and acremines O (6), P (7), Q (8), and R (9), together with the known acremines A (1), F (2), and N (3) from the fungus Acremonium persicinum cultured from the marine sponge Anomoianthella rubra. The relative configuration of acremine F (2) was determined by analyses of proton coupling constant values and NOESY data, and the absolute configuration confirmed as (1S, 4S, 6R) by X-ray crystallographic analysis of the borate ester derivative 15. Acremines O, P, and R were each shown to be of 8R configuration by 1H NMR analyses of MPA esters. The relative configurations suggested for acremines P and Q were each deduced by molecular modeling together with NOESY and coupling constant data. The 3 J H–C values in acremine P were measured using the pulse sequence EXSIDE, and the observed 3 J H8–C4 of 5.4 Hz and small 3 J H–C values (<1.5 Hz) from H-8 to C-10 and C-11 were fully consistent with stereoisomer 7a. For acremine Q, NOESY data combined with molecular modeling established the preferred diastereomer 8a.</abstract><cop>United States</cop><pub>American Chemical Society and American Society of Pharmacognosy</pub><pmid>23883432</pmid><doi>10.1021/np4002114</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0163-3864 |
ispartof | Journal of natural products (Washington, D.C.), 2013-08, Vol.76 (8), p.1432-1440 |
issn | 0163-3864 1520-6025 |
language | eng |
recordid | cdi_proquest_miscellaneous_1534829742 |
source | ACS Publications; MEDLINE |
subjects | Acremonium - chemistry Acremonium persicinum Animals Anomoianthella rubra Crystallography, X-Ray Marine Molecular Conformation Molecular Structure Nuclear Magnetic Resonance, Biomolecular Oceans and Seas Porifera - microbiology Terpenes - chemistry Terpenes - isolation & purification |
title | Secondary Metabolites of the Sponge-Derived Fungus Acremonium persicinum |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T03%3A10%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Secondary%20Metabolites%20of%20the%20Sponge-Derived%20Fungus%20Acremonium%20persicinum&rft.jtitle=Journal%20of%20natural%20products%20(Washington,%20D.C.)&rft.au=Suciati&rft.date=2013-08-23&rft.volume=76&rft.issue=8&rft.spage=1432&rft.epage=1440&rft.pages=1432-1440&rft.issn=0163-3864&rft.eissn=1520-6025&rft_id=info:doi/10.1021/np4002114&rft_dat=%3Cproquest_cross%3E1534829742%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1427749067&rft_id=info:pmid/23883432&rfr_iscdi=true |