Assessment of tissue allograft safety monitoring with administrative healthcare databases: a pilot project using Medicare data
Assess whether Medicare data are useful for monitoring tissue allograft safety and utilization. We used health care claims (billing) data from 2007 for 35 million fee-for-service Medicare beneficiaries, a predominantly elderly population. Using search terms for transplant-related procedures, we gene...
Gespeichert in:
Veröffentlicht in: | Cell and tissue banking 2014-03, Vol.15 (1), p.75-84 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 84 |
---|---|
container_issue | 1 |
container_start_page | 75 |
container_title | Cell and tissue banking |
container_volume | 15 |
creator | Dhakal, Sanjaya Burwen, Dale R. Polakowski, Laura L. Zinderman, Craig E. Wise, Robert P. |
description | Assess whether Medicare data are useful for monitoring tissue allograft safety and utilization. We used health care claims (billing) data from 2007 for 35 million fee-for-service Medicare beneficiaries, a predominantly elderly population. Using search terms for transplant-related procedures, we generated lists of ICD-9-CM and CPT
®
codes and assessed the frequency of selected allograft procedures. Step 1 used inpatient data and ICD-9-CM procedure codes. Step 2 added non-institutional provider (e.g., physician) claims, outpatient institutional claims, and CPT codes. We assembled preliminary lists of diagnosis codes for infections after selected allograft procedures. Many ICD-9-CM codes were ambiguous as to whether the procedure involved an allograft. Among 1.3 million persons with a procedure ascertained using the list of ICD-9-CM codes, only 1,886 claims clearly involved an allograft. CPT codes enabled better ascertainment of some allograft procedures (over 17,000 persons had corneal transplants and over 2,700 had allograft skin transplants). For spinal fusion procedures, CPT codes improved specificity for allografts; of nearly 100,000 patients with ICD-9-CM codes for spinal fusions, more than 34,000 had CPT codes indicating allograft use. Monitoring infrequent events (infections) after infrequent exposures (tissue allografts) requires large study populations. A strength of the large Medicare databases is the substantial number of certain allograft procedures. Limitations include lack of clinical detail and donor information. Medicare data can potentially augment passive reporting systems and may be useful for monitoring tissue allograft safety and utilization where codes clearly identify allograft use and coding algorithms can effectively screen for infections. |
doi_str_mv | 10.1007/s10561-013-9376-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1534828734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3230670721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-ce44c2850021513ecd73e3200d180b9a0f1a3bbb9ff5de0d78f9ec7f360531ce3</originalsourceid><addsrcrecordid>eNqNkU2L1TAUhosozjj6A9xIwI2bapKTtKm7YfALRtzouqTpydxc2uaak47cjb_dlDsOIgiuEsjzvjmHp6qeC_5acN6-IcF1I2ouoO6gberjg-pc6Bbqxgj1sNzBdOUF4Kx6QrTnXPJWwuPqTIKRSnNzXv28JEKiGZfMomc5EK3I7DTFm2R9ZmQ95iOb4xJyTGG5YT9C3jE7zmEJlJPN4RbZDu2Ud84mZKPNdrCl8y2z7BCmmNkhxT26zFba8p9xDPfk0-qRtxPhs7vzovr2_t3Xq4_19ZcPn64ur2unlMm1Q6WcNLpsILQAdGMLCJLzURg-dJZ7YWEYhs57PSIfW-M7dK2HhmsQDuGienXqLbN8X5FyPwdyOE12wbhSLzQoI00L6j9QDlrxphMFffkXuo9rWsoiGyUl6E6YQokT5VIkSuj7QwqzTcde8H7z2J889sVjv3nsjyXz4q55HWYc7xO_xRVAngA6bFYw_fH1P1t_AU5Cqo0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1502235918</pqid></control><display><type>article</type><title>Assessment of tissue allograft safety monitoring with administrative healthcare databases: a pilot project using Medicare data</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Dhakal, Sanjaya ; Burwen, Dale R. ; Polakowski, Laura L. ; Zinderman, Craig E. ; Wise, Robert P.</creator><creatorcontrib>Dhakal, Sanjaya ; Burwen, Dale R. ; Polakowski, Laura L. ; Zinderman, Craig E. ; Wise, Robert P.</creatorcontrib><description>Assess whether Medicare data are useful for monitoring tissue allograft safety and utilization. We used health care claims (billing) data from 2007 for 35 million fee-for-service Medicare beneficiaries, a predominantly elderly population. Using search terms for transplant-related procedures, we generated lists of ICD-9-CM and CPT
®
codes and assessed the frequency of selected allograft procedures. Step 1 used inpatient data and ICD-9-CM procedure codes. Step 2 added non-institutional provider (e.g., physician) claims, outpatient institutional claims, and CPT codes. We assembled preliminary lists of diagnosis codes for infections after selected allograft procedures. Many ICD-9-CM codes were ambiguous as to whether the procedure involved an allograft. Among 1.3 million persons with a procedure ascertained using the list of ICD-9-CM codes, only 1,886 claims clearly involved an allograft. CPT codes enabled better ascertainment of some allograft procedures (over 17,000 persons had corneal transplants and over 2,700 had allograft skin transplants). For spinal fusion procedures, CPT codes improved specificity for allografts; of nearly 100,000 patients with ICD-9-CM codes for spinal fusions, more than 34,000 had CPT codes indicating allograft use. Monitoring infrequent events (infections) after infrequent exposures (tissue allografts) requires large study populations. A strength of the large Medicare databases is the substantial number of certain allograft procedures. Limitations include lack of clinical detail and donor information. Medicare data can potentially augment passive reporting systems and may be useful for monitoring tissue allograft safety and utilization where codes clearly identify allograft use and coding algorithms can effectively screen for infections.</description><identifier>ISSN: 1389-9333</identifier><identifier>EISSN: 1573-6814</identifier><identifier>DOI: 10.1007/s10561-013-9376-y</identifier><identifier>PMID: 23824508</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Allografts ; Autografts ; Biomedical and Life Sciences ; Biomedicine ; Cell Biology ; Databases, Factual ; International Classification of Diseases ; Life Sciences ; Medicare ; Original Paper ; Pilot Projects ; Tissue engineering ; Tissue Transplantation - adverse effects ; Transplant Surgery ; Transplantation, Autologous - adverse effects ; Transplantation, Homologous - adverse effects ; Transplants & implants ; United States</subject><ispartof>Cell and tissue banking, 2014-03, Vol.15 (1), p.75-84</ispartof><rights>Springer Science+Business Media Dordrecht (Outside the USA) 2013</rights><rights>Springer Science+Business Media Dordrecht 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-ce44c2850021513ecd73e3200d180b9a0f1a3bbb9ff5de0d78f9ec7f360531ce3</citedby><cites>FETCH-LOGICAL-c448t-ce44c2850021513ecd73e3200d180b9a0f1a3bbb9ff5de0d78f9ec7f360531ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10561-013-9376-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10561-013-9376-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23824508$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dhakal, Sanjaya</creatorcontrib><creatorcontrib>Burwen, Dale R.</creatorcontrib><creatorcontrib>Polakowski, Laura L.</creatorcontrib><creatorcontrib>Zinderman, Craig E.</creatorcontrib><creatorcontrib>Wise, Robert P.</creatorcontrib><title>Assessment of tissue allograft safety monitoring with administrative healthcare databases: a pilot project using Medicare data</title><title>Cell and tissue banking</title><addtitle>Cell Tissue Bank</addtitle><addtitle>Cell Tissue Bank</addtitle><description>Assess whether Medicare data are useful for monitoring tissue allograft safety and utilization. We used health care claims (billing) data from 2007 for 35 million fee-for-service Medicare beneficiaries, a predominantly elderly population. Using search terms for transplant-related procedures, we generated lists of ICD-9-CM and CPT
®
codes and assessed the frequency of selected allograft procedures. Step 1 used inpatient data and ICD-9-CM procedure codes. Step 2 added non-institutional provider (e.g., physician) claims, outpatient institutional claims, and CPT codes. We assembled preliminary lists of diagnosis codes for infections after selected allograft procedures. Many ICD-9-CM codes were ambiguous as to whether the procedure involved an allograft. Among 1.3 million persons with a procedure ascertained using the list of ICD-9-CM codes, only 1,886 claims clearly involved an allograft. CPT codes enabled better ascertainment of some allograft procedures (over 17,000 persons had corneal transplants and over 2,700 had allograft skin transplants). For spinal fusion procedures, CPT codes improved specificity for allografts; of nearly 100,000 patients with ICD-9-CM codes for spinal fusions, more than 34,000 had CPT codes indicating allograft use. Monitoring infrequent events (infections) after infrequent exposures (tissue allografts) requires large study populations. A strength of the large Medicare databases is the substantial number of certain allograft procedures. Limitations include lack of clinical detail and donor information. Medicare data can potentially augment passive reporting systems and may be useful for monitoring tissue allograft safety and utilization where codes clearly identify allograft use and coding algorithms can effectively screen for infections.</description><subject>Algorithms</subject><subject>Allografts</subject><subject>Autografts</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Biology</subject><subject>Databases, Factual</subject><subject>International Classification of Diseases</subject><subject>Life Sciences</subject><subject>Medicare</subject><subject>Original Paper</subject><subject>Pilot Projects</subject><subject>Tissue engineering</subject><subject>Tissue Transplantation - adverse effects</subject><subject>Transplant Surgery</subject><subject>Transplantation, Autologous - adverse effects</subject><subject>Transplantation, Homologous - adverse effects</subject><subject>Transplants & implants</subject><subject>United States</subject><issn>1389-9333</issn><issn>1573-6814</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkU2L1TAUhosozjj6A9xIwI2bapKTtKm7YfALRtzouqTpydxc2uaak47cjb_dlDsOIgiuEsjzvjmHp6qeC_5acN6-IcF1I2ouoO6gberjg-pc6Bbqxgj1sNzBdOUF4Kx6QrTnXPJWwuPqTIKRSnNzXv28JEKiGZfMomc5EK3I7DTFm2R9ZmQ95iOb4xJyTGG5YT9C3jE7zmEJlJPN4RbZDu2Ud84mZKPNdrCl8y2z7BCmmNkhxT26zFba8p9xDPfk0-qRtxPhs7vzovr2_t3Xq4_19ZcPn64ur2unlMm1Q6WcNLpsILQAdGMLCJLzURg-dJZ7YWEYhs57PSIfW-M7dK2HhmsQDuGienXqLbN8X5FyPwdyOE12wbhSLzQoI00L6j9QDlrxphMFffkXuo9rWsoiGyUl6E6YQokT5VIkSuj7QwqzTcde8H7z2J889sVjv3nsjyXz4q55HWYc7xO_xRVAngA6bFYw_fH1P1t_AU5Cqo0</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Dhakal, Sanjaya</creator><creator>Burwen, Dale R.</creator><creator>Polakowski, Laura L.</creator><creator>Zinderman, Craig E.</creator><creator>Wise, Robert P.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20140301</creationdate><title>Assessment of tissue allograft safety monitoring with administrative healthcare databases: a pilot project using Medicare data</title><author>Dhakal, Sanjaya ; Burwen, Dale R. ; Polakowski, Laura L. ; Zinderman, Craig E. ; Wise, Robert P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-ce44c2850021513ecd73e3200d180b9a0f1a3bbb9ff5de0d78f9ec7f360531ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Allografts</topic><topic>Autografts</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Biology</topic><topic>Databases, Factual</topic><topic>International Classification of Diseases</topic><topic>Life Sciences</topic><topic>Medicare</topic><topic>Original Paper</topic><topic>Pilot Projects</topic><topic>Tissue engineering</topic><topic>Tissue Transplantation - adverse effects</topic><topic>Transplant Surgery</topic><topic>Transplantation, Autologous - adverse effects</topic><topic>Transplantation, Homologous - adverse effects</topic><topic>Transplants & implants</topic><topic>United States</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dhakal, Sanjaya</creatorcontrib><creatorcontrib>Burwen, Dale R.</creatorcontrib><creatorcontrib>Polakowski, Laura L.</creatorcontrib><creatorcontrib>Zinderman, Craig E.</creatorcontrib><creatorcontrib>Wise, Robert P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Cell and tissue banking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dhakal, Sanjaya</au><au>Burwen, Dale R.</au><au>Polakowski, Laura L.</au><au>Zinderman, Craig E.</au><au>Wise, Robert P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of tissue allograft safety monitoring with administrative healthcare databases: a pilot project using Medicare data</atitle><jtitle>Cell and tissue banking</jtitle><stitle>Cell Tissue Bank</stitle><addtitle>Cell Tissue Bank</addtitle><date>2014-03-01</date><risdate>2014</risdate><volume>15</volume><issue>1</issue><spage>75</spage><epage>84</epage><pages>75-84</pages><issn>1389-9333</issn><eissn>1573-6814</eissn><abstract>Assess whether Medicare data are useful for monitoring tissue allograft safety and utilization. We used health care claims (billing) data from 2007 for 35 million fee-for-service Medicare beneficiaries, a predominantly elderly population. Using search terms for transplant-related procedures, we generated lists of ICD-9-CM and CPT
®
codes and assessed the frequency of selected allograft procedures. Step 1 used inpatient data and ICD-9-CM procedure codes. Step 2 added non-institutional provider (e.g., physician) claims, outpatient institutional claims, and CPT codes. We assembled preliminary lists of diagnosis codes for infections after selected allograft procedures. Many ICD-9-CM codes were ambiguous as to whether the procedure involved an allograft. Among 1.3 million persons with a procedure ascertained using the list of ICD-9-CM codes, only 1,886 claims clearly involved an allograft. CPT codes enabled better ascertainment of some allograft procedures (over 17,000 persons had corneal transplants and over 2,700 had allograft skin transplants). For spinal fusion procedures, CPT codes improved specificity for allografts; of nearly 100,000 patients with ICD-9-CM codes for spinal fusions, more than 34,000 had CPT codes indicating allograft use. Monitoring infrequent events (infections) after infrequent exposures (tissue allografts) requires large study populations. A strength of the large Medicare databases is the substantial number of certain allograft procedures. Limitations include lack of clinical detail and donor information. Medicare data can potentially augment passive reporting systems and may be useful for monitoring tissue allograft safety and utilization where codes clearly identify allograft use and coding algorithms can effectively screen for infections.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>23824508</pmid><doi>10.1007/s10561-013-9376-y</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1389-9333 |
ispartof | Cell and tissue banking, 2014-03, Vol.15 (1), p.75-84 |
issn | 1389-9333 1573-6814 |
language | eng |
recordid | cdi_proquest_miscellaneous_1534828734 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Algorithms Allografts Autografts Biomedical and Life Sciences Biomedicine Cell Biology Databases, Factual International Classification of Diseases Life Sciences Medicare Original Paper Pilot Projects Tissue engineering Tissue Transplantation - adverse effects Transplant Surgery Transplantation, Autologous - adverse effects Transplantation, Homologous - adverse effects Transplants & implants United States |
title | Assessment of tissue allograft safety monitoring with administrative healthcare databases: a pilot project using Medicare data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A28%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20tissue%20allograft%20safety%20monitoring%20with%20administrative%20healthcare%20databases:%20a%20pilot%20project%20using%20Medicare%20data&rft.jtitle=Cell%20and%20tissue%20banking&rft.au=Dhakal,%20Sanjaya&rft.date=2014-03-01&rft.volume=15&rft.issue=1&rft.spage=75&rft.epage=84&rft.pages=75-84&rft.issn=1389-9333&rft.eissn=1573-6814&rft_id=info:doi/10.1007/s10561-013-9376-y&rft_dat=%3Cproquest_cross%3E3230670721%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1502235918&rft_id=info:pmid/23824508&rfr_iscdi=true |