Assessment of tissue allograft safety monitoring with administrative healthcare databases: a pilot project using Medicare data

Assess whether Medicare data are useful for monitoring tissue allograft safety and utilization. We used health care claims (billing) data from 2007 for 35 million fee-for-service Medicare beneficiaries, a predominantly elderly population. Using search terms for transplant-related procedures, we gene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell and tissue banking 2014-03, Vol.15 (1), p.75-84
Hauptverfasser: Dhakal, Sanjaya, Burwen, Dale R., Polakowski, Laura L., Zinderman, Craig E., Wise, Robert P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 84
container_issue 1
container_start_page 75
container_title Cell and tissue banking
container_volume 15
creator Dhakal, Sanjaya
Burwen, Dale R.
Polakowski, Laura L.
Zinderman, Craig E.
Wise, Robert P.
description Assess whether Medicare data are useful for monitoring tissue allograft safety and utilization. We used health care claims (billing) data from 2007 for 35 million fee-for-service Medicare beneficiaries, a predominantly elderly population. Using search terms for transplant-related procedures, we generated lists of ICD-9-CM and CPT ® codes and assessed the frequency of selected allograft procedures. Step 1 used inpatient data and ICD-9-CM procedure codes. Step 2 added non-institutional provider (e.g., physician) claims, outpatient institutional claims, and CPT codes. We assembled preliminary lists of diagnosis codes for infections after selected allograft procedures. Many ICD-9-CM codes were ambiguous as to whether the procedure involved an allograft. Among 1.3 million persons with a procedure ascertained using the list of ICD-9-CM codes, only 1,886 claims clearly involved an allograft. CPT codes enabled better ascertainment of some allograft procedures (over 17,000 persons had corneal transplants and over 2,700 had allograft skin transplants). For spinal fusion procedures, CPT codes improved specificity for allografts; of nearly 100,000 patients with ICD-9-CM codes for spinal fusions, more than 34,000 had CPT codes indicating allograft use. Monitoring infrequent events (infections) after infrequent exposures (tissue allografts) requires large study populations. A strength of the large Medicare databases is the substantial number of certain allograft procedures. Limitations include lack of clinical detail and donor information. Medicare data can potentially augment passive reporting systems and may be useful for monitoring tissue allograft safety and utilization where codes clearly identify allograft use and coding algorithms can effectively screen for infections.
doi_str_mv 10.1007/s10561-013-9376-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1534828734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3230670721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-ce44c2850021513ecd73e3200d180b9a0f1a3bbb9ff5de0d78f9ec7f360531ce3</originalsourceid><addsrcrecordid>eNqNkU2L1TAUhosozjj6A9xIwI2bapKTtKm7YfALRtzouqTpydxc2uaak47cjb_dlDsOIgiuEsjzvjmHp6qeC_5acN6-IcF1I2ouoO6gberjg-pc6Bbqxgj1sNzBdOUF4Kx6QrTnXPJWwuPqTIKRSnNzXv28JEKiGZfMomc5EK3I7DTFm2R9ZmQ95iOb4xJyTGG5YT9C3jE7zmEJlJPN4RbZDu2Ud84mZKPNdrCl8y2z7BCmmNkhxT26zFba8p9xDPfk0-qRtxPhs7vzovr2_t3Xq4_19ZcPn64ur2unlMm1Q6WcNLpsILQAdGMLCJLzURg-dJZ7YWEYhs57PSIfW-M7dK2HhmsQDuGienXqLbN8X5FyPwdyOE12wbhSLzQoI00L6j9QDlrxphMFffkXuo9rWsoiGyUl6E6YQokT5VIkSuj7QwqzTcde8H7z2J889sVjv3nsjyXz4q55HWYc7xO_xRVAngA6bFYw_fH1P1t_AU5Cqo0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1502235918</pqid></control><display><type>article</type><title>Assessment of tissue allograft safety monitoring with administrative healthcare databases: a pilot project using Medicare data</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Dhakal, Sanjaya ; Burwen, Dale R. ; Polakowski, Laura L. ; Zinderman, Craig E. ; Wise, Robert P.</creator><creatorcontrib>Dhakal, Sanjaya ; Burwen, Dale R. ; Polakowski, Laura L. ; Zinderman, Craig E. ; Wise, Robert P.</creatorcontrib><description>Assess whether Medicare data are useful for monitoring tissue allograft safety and utilization. We used health care claims (billing) data from 2007 for 35 million fee-for-service Medicare beneficiaries, a predominantly elderly population. Using search terms for transplant-related procedures, we generated lists of ICD-9-CM and CPT ® codes and assessed the frequency of selected allograft procedures. Step 1 used inpatient data and ICD-9-CM procedure codes. Step 2 added non-institutional provider (e.g., physician) claims, outpatient institutional claims, and CPT codes. We assembled preliminary lists of diagnosis codes for infections after selected allograft procedures. Many ICD-9-CM codes were ambiguous as to whether the procedure involved an allograft. Among 1.3 million persons with a procedure ascertained using the list of ICD-9-CM codes, only 1,886 claims clearly involved an allograft. CPT codes enabled better ascertainment of some allograft procedures (over 17,000 persons had corneal transplants and over 2,700 had allograft skin transplants). For spinal fusion procedures, CPT codes improved specificity for allografts; of nearly 100,000 patients with ICD-9-CM codes for spinal fusions, more than 34,000 had CPT codes indicating allograft use. Monitoring infrequent events (infections) after infrequent exposures (tissue allografts) requires large study populations. A strength of the large Medicare databases is the substantial number of certain allograft procedures. Limitations include lack of clinical detail and donor information. Medicare data can potentially augment passive reporting systems and may be useful for monitoring tissue allograft safety and utilization where codes clearly identify allograft use and coding algorithms can effectively screen for infections.</description><identifier>ISSN: 1389-9333</identifier><identifier>EISSN: 1573-6814</identifier><identifier>DOI: 10.1007/s10561-013-9376-y</identifier><identifier>PMID: 23824508</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Allografts ; Autografts ; Biomedical and Life Sciences ; Biomedicine ; Cell Biology ; Databases, Factual ; International Classification of Diseases ; Life Sciences ; Medicare ; Original Paper ; Pilot Projects ; Tissue engineering ; Tissue Transplantation - adverse effects ; Transplant Surgery ; Transplantation, Autologous - adverse effects ; Transplantation, Homologous - adverse effects ; Transplants &amp; implants ; United States</subject><ispartof>Cell and tissue banking, 2014-03, Vol.15 (1), p.75-84</ispartof><rights>Springer Science+Business Media Dordrecht (Outside the USA) 2013</rights><rights>Springer Science+Business Media Dordrecht 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-ce44c2850021513ecd73e3200d180b9a0f1a3bbb9ff5de0d78f9ec7f360531ce3</citedby><cites>FETCH-LOGICAL-c448t-ce44c2850021513ecd73e3200d180b9a0f1a3bbb9ff5de0d78f9ec7f360531ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10561-013-9376-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10561-013-9376-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23824508$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dhakal, Sanjaya</creatorcontrib><creatorcontrib>Burwen, Dale R.</creatorcontrib><creatorcontrib>Polakowski, Laura L.</creatorcontrib><creatorcontrib>Zinderman, Craig E.</creatorcontrib><creatorcontrib>Wise, Robert P.</creatorcontrib><title>Assessment of tissue allograft safety monitoring with administrative healthcare databases: a pilot project using Medicare data</title><title>Cell and tissue banking</title><addtitle>Cell Tissue Bank</addtitle><addtitle>Cell Tissue Bank</addtitle><description>Assess whether Medicare data are useful for monitoring tissue allograft safety and utilization. We used health care claims (billing) data from 2007 for 35 million fee-for-service Medicare beneficiaries, a predominantly elderly population. Using search terms for transplant-related procedures, we generated lists of ICD-9-CM and CPT ® codes and assessed the frequency of selected allograft procedures. Step 1 used inpatient data and ICD-9-CM procedure codes. Step 2 added non-institutional provider (e.g., physician) claims, outpatient institutional claims, and CPT codes. We assembled preliminary lists of diagnosis codes for infections after selected allograft procedures. Many ICD-9-CM codes were ambiguous as to whether the procedure involved an allograft. Among 1.3 million persons with a procedure ascertained using the list of ICD-9-CM codes, only 1,886 claims clearly involved an allograft. CPT codes enabled better ascertainment of some allograft procedures (over 17,000 persons had corneal transplants and over 2,700 had allograft skin transplants). For spinal fusion procedures, CPT codes improved specificity for allografts; of nearly 100,000 patients with ICD-9-CM codes for spinal fusions, more than 34,000 had CPT codes indicating allograft use. Monitoring infrequent events (infections) after infrequent exposures (tissue allografts) requires large study populations. A strength of the large Medicare databases is the substantial number of certain allograft procedures. Limitations include lack of clinical detail and donor information. Medicare data can potentially augment passive reporting systems and may be useful for monitoring tissue allograft safety and utilization where codes clearly identify allograft use and coding algorithms can effectively screen for infections.</description><subject>Algorithms</subject><subject>Allografts</subject><subject>Autografts</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Biology</subject><subject>Databases, Factual</subject><subject>International Classification of Diseases</subject><subject>Life Sciences</subject><subject>Medicare</subject><subject>Original Paper</subject><subject>Pilot Projects</subject><subject>Tissue engineering</subject><subject>Tissue Transplantation - adverse effects</subject><subject>Transplant Surgery</subject><subject>Transplantation, Autologous - adverse effects</subject><subject>Transplantation, Homologous - adverse effects</subject><subject>Transplants &amp; implants</subject><subject>United States</subject><issn>1389-9333</issn><issn>1573-6814</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkU2L1TAUhosozjj6A9xIwI2bapKTtKm7YfALRtzouqTpydxc2uaak47cjb_dlDsOIgiuEsjzvjmHp6qeC_5acN6-IcF1I2ouoO6gberjg-pc6Bbqxgj1sNzBdOUF4Kx6QrTnXPJWwuPqTIKRSnNzXv28JEKiGZfMomc5EK3I7DTFm2R9ZmQ95iOb4xJyTGG5YT9C3jE7zmEJlJPN4RbZDu2Ud84mZKPNdrCl8y2z7BCmmNkhxT26zFba8p9xDPfk0-qRtxPhs7vzovr2_t3Xq4_19ZcPn64ur2unlMm1Q6WcNLpsILQAdGMLCJLzURg-dJZ7YWEYhs57PSIfW-M7dK2HhmsQDuGienXqLbN8X5FyPwdyOE12wbhSLzQoI00L6j9QDlrxphMFffkXuo9rWsoiGyUl6E6YQokT5VIkSuj7QwqzTcde8H7z2J889sVjv3nsjyXz4q55HWYc7xO_xRVAngA6bFYw_fH1P1t_AU5Cqo0</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Dhakal, Sanjaya</creator><creator>Burwen, Dale R.</creator><creator>Polakowski, Laura L.</creator><creator>Zinderman, Craig E.</creator><creator>Wise, Robert P.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20140301</creationdate><title>Assessment of tissue allograft safety monitoring with administrative healthcare databases: a pilot project using Medicare data</title><author>Dhakal, Sanjaya ; Burwen, Dale R. ; Polakowski, Laura L. ; Zinderman, Craig E. ; Wise, Robert P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-ce44c2850021513ecd73e3200d180b9a0f1a3bbb9ff5de0d78f9ec7f360531ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Allografts</topic><topic>Autografts</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Biology</topic><topic>Databases, Factual</topic><topic>International Classification of Diseases</topic><topic>Life Sciences</topic><topic>Medicare</topic><topic>Original Paper</topic><topic>Pilot Projects</topic><topic>Tissue engineering</topic><topic>Tissue Transplantation - adverse effects</topic><topic>Transplant Surgery</topic><topic>Transplantation, Autologous - adverse effects</topic><topic>Transplantation, Homologous - adverse effects</topic><topic>Transplants &amp; implants</topic><topic>United States</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dhakal, Sanjaya</creatorcontrib><creatorcontrib>Burwen, Dale R.</creatorcontrib><creatorcontrib>Polakowski, Laura L.</creatorcontrib><creatorcontrib>Zinderman, Craig E.</creatorcontrib><creatorcontrib>Wise, Robert P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Cell and tissue banking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dhakal, Sanjaya</au><au>Burwen, Dale R.</au><au>Polakowski, Laura L.</au><au>Zinderman, Craig E.</au><au>Wise, Robert P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of tissue allograft safety monitoring with administrative healthcare databases: a pilot project using Medicare data</atitle><jtitle>Cell and tissue banking</jtitle><stitle>Cell Tissue Bank</stitle><addtitle>Cell Tissue Bank</addtitle><date>2014-03-01</date><risdate>2014</risdate><volume>15</volume><issue>1</issue><spage>75</spage><epage>84</epage><pages>75-84</pages><issn>1389-9333</issn><eissn>1573-6814</eissn><abstract>Assess whether Medicare data are useful for monitoring tissue allograft safety and utilization. We used health care claims (billing) data from 2007 for 35 million fee-for-service Medicare beneficiaries, a predominantly elderly population. Using search terms for transplant-related procedures, we generated lists of ICD-9-CM and CPT ® codes and assessed the frequency of selected allograft procedures. Step 1 used inpatient data and ICD-9-CM procedure codes. Step 2 added non-institutional provider (e.g., physician) claims, outpatient institutional claims, and CPT codes. We assembled preliminary lists of diagnosis codes for infections after selected allograft procedures. Many ICD-9-CM codes were ambiguous as to whether the procedure involved an allograft. Among 1.3 million persons with a procedure ascertained using the list of ICD-9-CM codes, only 1,886 claims clearly involved an allograft. CPT codes enabled better ascertainment of some allograft procedures (over 17,000 persons had corneal transplants and over 2,700 had allograft skin transplants). For spinal fusion procedures, CPT codes improved specificity for allografts; of nearly 100,000 patients with ICD-9-CM codes for spinal fusions, more than 34,000 had CPT codes indicating allograft use. Monitoring infrequent events (infections) after infrequent exposures (tissue allografts) requires large study populations. A strength of the large Medicare databases is the substantial number of certain allograft procedures. Limitations include lack of clinical detail and donor information. Medicare data can potentially augment passive reporting systems and may be useful for monitoring tissue allograft safety and utilization where codes clearly identify allograft use and coding algorithms can effectively screen for infections.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>23824508</pmid><doi>10.1007/s10561-013-9376-y</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1389-9333
ispartof Cell and tissue banking, 2014-03, Vol.15 (1), p.75-84
issn 1389-9333
1573-6814
language eng
recordid cdi_proquest_miscellaneous_1534828734
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Algorithms
Allografts
Autografts
Biomedical and Life Sciences
Biomedicine
Cell Biology
Databases, Factual
International Classification of Diseases
Life Sciences
Medicare
Original Paper
Pilot Projects
Tissue engineering
Tissue Transplantation - adverse effects
Transplant Surgery
Transplantation, Autologous - adverse effects
Transplantation, Homologous - adverse effects
Transplants & implants
United States
title Assessment of tissue allograft safety monitoring with administrative healthcare databases: a pilot project using Medicare data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A28%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20tissue%20allograft%20safety%20monitoring%20with%20administrative%20healthcare%20databases:%20a%20pilot%20project%20using%20Medicare%20data&rft.jtitle=Cell%20and%20tissue%20banking&rft.au=Dhakal,%20Sanjaya&rft.date=2014-03-01&rft.volume=15&rft.issue=1&rft.spage=75&rft.epage=84&rft.pages=75-84&rft.issn=1389-9333&rft.eissn=1573-6814&rft_id=info:doi/10.1007/s10561-013-9376-y&rft_dat=%3Cproquest_cross%3E3230670721%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1502235918&rft_id=info:pmid/23824508&rfr_iscdi=true