Differential LRRK2 expression in the cortex, striatum, and substantia nigra in transgenic and nontransgenic rodents

ABSTRACT Mutations in leucine‐rich repeat kinase 2 (LRRK2) are found in a significant proportion of late‐onset Parkinson's disease (PD) patients. Elucidating the neuroanatomical localization of LRRK2 will further define LRRK2 function and the molecular basis of PD. Here, we utilize recently cha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of comparative neurology (1911) 2014-08, Vol.522 (11), p.Spc1-Spc1
Hauptverfasser: West, Andrew B., Cowell, Rita M., Daher, João P.L., Moehle, Mark S., Hinkle, Kelly M., Melrose, Heather L., Standaert, David G., Volpicelli-Daley, Laura A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page Spc1
container_issue 11
container_start_page Spc1
container_title Journal of comparative neurology (1911)
container_volume 522
creator West, Andrew B.
Cowell, Rita M.
Daher, João P.L.
Moehle, Mark S.
Hinkle, Kelly M.
Melrose, Heather L.
Standaert, David G.
Volpicelli-Daley, Laura A.
description ABSTRACT Mutations in leucine‐rich repeat kinase 2 (LRRK2) are found in a significant proportion of late‐onset Parkinson's disease (PD) patients. Elucidating the neuroanatomical localization of LRRK2 will further define LRRK2 function and the molecular basis of PD. Here, we utilize recently characterized monoclonal antibodies to evaluate LRRK2 expression in rodent brain regions relevant to PD. In both mice and rats, LRRK2 is highly expressed in the cortex and striatum, particularly in pyramidal neurons of layer V and in medium spiny neurons within striosomes. Overall, rats have a more restricted distribution of LRRK2 compared with mice. Mice, but not rats, show high levels of LRRK2 expression in the substantia nigra pars compacta. Expression of the pathogenic LRRK2‐G2019S protein from mouse bacterial artificial chromosome (BAC) constructs closely mimics endogenous LRRK2 distribution in the mouse brain. However, LRRK2‐G2019S expression derived from human BAC constructs causes LRRK2 to be expressed in additional neuron subtypes in the rat such as striatal cholinergic interneurons and the substantia nigra pars compacta. The distribution of LRRK2 from human BAC constructs more closely resembles descriptions of LRRK2 in humans and nonhuman primates. Computational analyses of DNA regulatory elements in LRRK2 show a primate‐specific promoter sequence that does not exist in lower mammalian species. These noncoding regions may be involved in directing neuronal expression patterns. Together, these studies will aid in understanding the normal function of LRRK2 in the brain and will assist in model selection for future studies. J. Comp. Neurol. 522:2465–2480, 2014. © 2014 Wiley Periodicals, Inc.
doi_str_mv 10.1002/cne.23612
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1534827782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1534827782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2202-8cdff12185da2ce06772354b8647d05b0f14807d230964b1bcb459c54c1fc2213</originalsourceid><addsrcrecordid>eNp1kE1PAjEQhhujiYge_Ac9asJC2_3o7tHwpQExQY3HptvtYnXpYmeJ8O8toMaLp0lmnvedmRehS0q6lBDWU1Z3WZhQdoRalGRJkKUJPUYtP6NBliX8FJ0BvBFCsixMWwgGpiy107YxssLT-XzCsN6snAYwtcXG4uZVY1W7Rm86GBpnZLNedrC0BYZ1Do3cKbE1Cyf3tJMWFtoatUdsbf90XF34RXCOTkpZgb74rm30PBo-9W-D6cP4rn8zDRRjhAWpKsqSMprGhWRKk4RzFsZRniYRL0ick5JGKeEFC_2fUU5zlUdxpuJI0dI70LCNrg6-K1d_rDU0YmlA6aqSVtdrEDQOo5RxnjKPXh9Q5WoAp0uxcmYp3VZQInbBCh-s2Afr2d6B_TSV3v4Piv5s-KMIDgoDPsZfhXTvIuEhj8XLbCzI42By788Ro_ALbBOJmA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1534827782</pqid></control><display><type>article</type><title>Differential LRRK2 expression in the cortex, striatum, and substantia nigra in transgenic and nontransgenic rodents</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>West, Andrew B. ; Cowell, Rita M. ; Daher, João P.L. ; Moehle, Mark S. ; Hinkle, Kelly M. ; Melrose, Heather L. ; Standaert, David G. ; Volpicelli-Daley, Laura A.</creator><creatorcontrib>West, Andrew B. ; Cowell, Rita M. ; Daher, João P.L. ; Moehle, Mark S. ; Hinkle, Kelly M. ; Melrose, Heather L. ; Standaert, David G. ; Volpicelli-Daley, Laura A.</creatorcontrib><description>ABSTRACT Mutations in leucine‐rich repeat kinase 2 (LRRK2) are found in a significant proportion of late‐onset Parkinson's disease (PD) patients. Elucidating the neuroanatomical localization of LRRK2 will further define LRRK2 function and the molecular basis of PD. Here, we utilize recently characterized monoclonal antibodies to evaluate LRRK2 expression in rodent brain regions relevant to PD. In both mice and rats, LRRK2 is highly expressed in the cortex and striatum, particularly in pyramidal neurons of layer V and in medium spiny neurons within striosomes. Overall, rats have a more restricted distribution of LRRK2 compared with mice. Mice, but not rats, show high levels of LRRK2 expression in the substantia nigra pars compacta. Expression of the pathogenic LRRK2‐G2019S protein from mouse bacterial artificial chromosome (BAC) constructs closely mimics endogenous LRRK2 distribution in the mouse brain. However, LRRK2‐G2019S expression derived from human BAC constructs causes LRRK2 to be expressed in additional neuron subtypes in the rat such as striatal cholinergic interneurons and the substantia nigra pars compacta. The distribution of LRRK2 from human BAC constructs more closely resembles descriptions of LRRK2 in humans and nonhuman primates. Computational analyses of DNA regulatory elements in LRRK2 show a primate‐specific promoter sequence that does not exist in lower mammalian species. These noncoding regions may be involved in directing neuronal expression patterns. Together, these studies will aid in understanding the normal function of LRRK2 in the brain and will assist in model selection for future studies. J. Comp. Neurol. 522:2465–2480, 2014. © 2014 Wiley Periodicals, Inc.</description><identifier>ISSN: 0021-9967</identifier><identifier>EISSN: 1096-9861</identifier><identifier>DOI: 10.1002/cne.23612</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>bacterial-artificial chromosome (BAC) transgenics ; neurodegeneration ; nigrostriatal circuit ; Parkinson's disease ; Primates</subject><ispartof>Journal of comparative neurology (1911), 2014-08, Vol.522 (11), p.Spc1-Spc1</ispartof><rights>2014 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2202-8cdff12185da2ce06772354b8647d05b0f14807d230964b1bcb459c54c1fc2213</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcne.23612$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcne.23612$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>West, Andrew B.</creatorcontrib><creatorcontrib>Cowell, Rita M.</creatorcontrib><creatorcontrib>Daher, João P.L.</creatorcontrib><creatorcontrib>Moehle, Mark S.</creatorcontrib><creatorcontrib>Hinkle, Kelly M.</creatorcontrib><creatorcontrib>Melrose, Heather L.</creatorcontrib><creatorcontrib>Standaert, David G.</creatorcontrib><creatorcontrib>Volpicelli-Daley, Laura A.</creatorcontrib><title>Differential LRRK2 expression in the cortex, striatum, and substantia nigra in transgenic and nontransgenic rodents</title><title>Journal of comparative neurology (1911)</title><addtitle>J. Comp. Neurol</addtitle><description>ABSTRACT Mutations in leucine‐rich repeat kinase 2 (LRRK2) are found in a significant proportion of late‐onset Parkinson's disease (PD) patients. Elucidating the neuroanatomical localization of LRRK2 will further define LRRK2 function and the molecular basis of PD. Here, we utilize recently characterized monoclonal antibodies to evaluate LRRK2 expression in rodent brain regions relevant to PD. In both mice and rats, LRRK2 is highly expressed in the cortex and striatum, particularly in pyramidal neurons of layer V and in medium spiny neurons within striosomes. Overall, rats have a more restricted distribution of LRRK2 compared with mice. Mice, but not rats, show high levels of LRRK2 expression in the substantia nigra pars compacta. Expression of the pathogenic LRRK2‐G2019S protein from mouse bacterial artificial chromosome (BAC) constructs closely mimics endogenous LRRK2 distribution in the mouse brain. However, LRRK2‐G2019S expression derived from human BAC constructs causes LRRK2 to be expressed in additional neuron subtypes in the rat such as striatal cholinergic interneurons and the substantia nigra pars compacta. The distribution of LRRK2 from human BAC constructs more closely resembles descriptions of LRRK2 in humans and nonhuman primates. Computational analyses of DNA regulatory elements in LRRK2 show a primate‐specific promoter sequence that does not exist in lower mammalian species. These noncoding regions may be involved in directing neuronal expression patterns. Together, these studies will aid in understanding the normal function of LRRK2 in the brain and will assist in model selection for future studies. J. Comp. Neurol. 522:2465–2480, 2014. © 2014 Wiley Periodicals, Inc.</description><subject>bacterial-artificial chromosome (BAC) transgenics</subject><subject>neurodegeneration</subject><subject>nigrostriatal circuit</subject><subject>Parkinson's disease</subject><subject>Primates</subject><issn>0021-9967</issn><issn>1096-9861</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PAjEQhhujiYge_Ac9asJC2_3o7tHwpQExQY3HptvtYnXpYmeJ8O8toMaLp0lmnvedmRehS0q6lBDWU1Z3WZhQdoRalGRJkKUJPUYtP6NBliX8FJ0BvBFCsixMWwgGpiy107YxssLT-XzCsN6snAYwtcXG4uZVY1W7Rm86GBpnZLNedrC0BYZ1Do3cKbE1Cyf3tJMWFtoatUdsbf90XF34RXCOTkpZgb74rm30PBo-9W-D6cP4rn8zDRRjhAWpKsqSMprGhWRKk4RzFsZRniYRL0ick5JGKeEFC_2fUU5zlUdxpuJI0dI70LCNrg6-K1d_rDU0YmlA6aqSVtdrEDQOo5RxnjKPXh9Q5WoAp0uxcmYp3VZQInbBCh-s2Afr2d6B_TSV3v4Piv5s-KMIDgoDPsZfhXTvIuEhj8XLbCzI42By788Ro_ALbBOJmA</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>West, Andrew B.</creator><creator>Cowell, Rita M.</creator><creator>Daher, João P.L.</creator><creator>Moehle, Mark S.</creator><creator>Hinkle, Kelly M.</creator><creator>Melrose, Heather L.</creator><creator>Standaert, David G.</creator><creator>Volpicelli-Daley, Laura A.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope></search><sort><creationdate>20140801</creationdate><title>Differential LRRK2 expression in the cortex, striatum, and substantia nigra in transgenic and nontransgenic rodents</title><author>West, Andrew B. ; Cowell, Rita M. ; Daher, João P.L. ; Moehle, Mark S. ; Hinkle, Kelly M. ; Melrose, Heather L. ; Standaert, David G. ; Volpicelli-Daley, Laura A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2202-8cdff12185da2ce06772354b8647d05b0f14807d230964b1bcb459c54c1fc2213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>bacterial-artificial chromosome (BAC) transgenics</topic><topic>neurodegeneration</topic><topic>nigrostriatal circuit</topic><topic>Parkinson's disease</topic><topic>Primates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>West, Andrew B.</creatorcontrib><creatorcontrib>Cowell, Rita M.</creatorcontrib><creatorcontrib>Daher, João P.L.</creatorcontrib><creatorcontrib>Moehle, Mark S.</creatorcontrib><creatorcontrib>Hinkle, Kelly M.</creatorcontrib><creatorcontrib>Melrose, Heather L.</creatorcontrib><creatorcontrib>Standaert, David G.</creatorcontrib><creatorcontrib>Volpicelli-Daley, Laura A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><jtitle>Journal of comparative neurology (1911)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>West, Andrew B.</au><au>Cowell, Rita M.</au><au>Daher, João P.L.</au><au>Moehle, Mark S.</au><au>Hinkle, Kelly M.</au><au>Melrose, Heather L.</au><au>Standaert, David G.</au><au>Volpicelli-Daley, Laura A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential LRRK2 expression in the cortex, striatum, and substantia nigra in transgenic and nontransgenic rodents</atitle><jtitle>Journal of comparative neurology (1911)</jtitle><addtitle>J. Comp. Neurol</addtitle><date>2014-08-01</date><risdate>2014</risdate><volume>522</volume><issue>11</issue><spage>Spc1</spage><epage>Spc1</epage><pages>Spc1-Spc1</pages><issn>0021-9967</issn><eissn>1096-9861</eissn><abstract>ABSTRACT Mutations in leucine‐rich repeat kinase 2 (LRRK2) are found in a significant proportion of late‐onset Parkinson's disease (PD) patients. Elucidating the neuroanatomical localization of LRRK2 will further define LRRK2 function and the molecular basis of PD. Here, we utilize recently characterized monoclonal antibodies to evaluate LRRK2 expression in rodent brain regions relevant to PD. In both mice and rats, LRRK2 is highly expressed in the cortex and striatum, particularly in pyramidal neurons of layer V and in medium spiny neurons within striosomes. Overall, rats have a more restricted distribution of LRRK2 compared with mice. Mice, but not rats, show high levels of LRRK2 expression in the substantia nigra pars compacta. Expression of the pathogenic LRRK2‐G2019S protein from mouse bacterial artificial chromosome (BAC) constructs closely mimics endogenous LRRK2 distribution in the mouse brain. However, LRRK2‐G2019S expression derived from human BAC constructs causes LRRK2 to be expressed in additional neuron subtypes in the rat such as striatal cholinergic interneurons and the substantia nigra pars compacta. The distribution of LRRK2 from human BAC constructs more closely resembles descriptions of LRRK2 in humans and nonhuman primates. Computational analyses of DNA regulatory elements in LRRK2 show a primate‐specific promoter sequence that does not exist in lower mammalian species. These noncoding regions may be involved in directing neuronal expression patterns. Together, these studies will aid in understanding the normal function of LRRK2 in the brain and will assist in model selection for future studies. J. Comp. Neurol. 522:2465–2480, 2014. © 2014 Wiley Periodicals, Inc.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1002/cne.23612</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9967
ispartof Journal of comparative neurology (1911), 2014-08, Vol.522 (11), p.Spc1-Spc1
issn 0021-9967
1096-9861
language eng
recordid cdi_proquest_miscellaneous_1534827782
source Wiley Online Library Journals Frontfile Complete
subjects bacterial-artificial chromosome (BAC) transgenics
neurodegeneration
nigrostriatal circuit
Parkinson's disease
Primates
title Differential LRRK2 expression in the cortex, striatum, and substantia nigra in transgenic and nontransgenic rodents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T16%3A34%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20LRRK2%20expression%20in%20the%20cortex,%20striatum,%20and%20substantia%20nigra%20in%20transgenic%20and%20nontransgenic%20rodents&rft.jtitle=Journal%20of%20comparative%20neurology%20(1911)&rft.au=West,%20Andrew%20B.&rft.date=2014-08-01&rft.volume=522&rft.issue=11&rft.spage=Spc1&rft.epage=Spc1&rft.pages=Spc1-Spc1&rft.issn=0021-9967&rft.eissn=1096-9861&rft_id=info:doi/10.1002/cne.23612&rft_dat=%3Cproquest_cross%3E1534827782%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1534827782&rft_id=info:pmid/&rfr_iscdi=true