Role of the Lipid Peroxidation Product, 4‑Hydroxynonenal, in the Development of Nitrate Tolerance
Tolerance to nitrates such as nitroglycerin (GTN) is associated with oxidative stress, inactivation of aldehyde dehydrogenase 2 (ALDH2), and decreased GTN-induced cGMP accumulation and vasodilation. We hypothesized that GTN-induced inactivation of ALDH2 results in increased 4-hydroxy-2-nonenal (HNE)...
Gespeichert in:
Veröffentlicht in: | Chemical research in toxicology 2014-04, Vol.27 (4), p.663-673 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 673 |
---|---|
container_issue | 4 |
container_start_page | 663 |
container_title | Chemical research in toxicology |
container_volume | 27 |
creator | D’Souza, Yohan Kawamoto, Toshihiro Bennett, Brian M |
description | Tolerance to nitrates such as nitroglycerin (GTN) is associated with oxidative stress, inactivation of aldehyde dehydrogenase 2 (ALDH2), and decreased GTN-induced cGMP accumulation and vasodilation. We hypothesized that GTN-induced inactivation of ALDH2 results in increased 4-hydroxy-2-nonenal (HNE) adduct formation of key proteins involved in GTN bioactivation, and, consequently, an attenuated vasodilator response to GTN (i.e., tolerance). We used an in vivo GTN tolerance model, a cell culture model of nitrate action, and Aldh2–/– mice to assess whether GTN exposure resulted in HNE adduct formation, and whether exogenous HNE affected GTN-induced relaxation and cGMP accumulation. Immunoblot analysis indicated a marked increase in HNE adduct formation in GTN-tolerant porcine kidney epithelial cells (PK1) and in aortae from GTN-tolerant rats and untreated Aldh2–/– mice. Preincubation of PK1 cells with HNE resulted in a dose-dependent decrease in GTN-induced cGMP accumulation, and pretreatment of isolated rat aorta with HNE resulted in dose-dependent decreases in the vasodilator response to GTN, thus mimicking GTN-tolerance. Pretreatment of aortae from Aldh2–/– mice with 10 μM HNE resulted in a desensitized vasodilator response to GTN. In the in vivo rat tolerance model, changes in HNE adduct formation correlated well with the onset of GTN tolerance and tolerance reversal. Furthermore, coadministration of an HNE scavenger during the tolerance induction protocol completely prevented HNE adduct formation and GTN tolerance but did not prevent the inactivation of ALDH2. The data are consistent with a novel mechanism of GTN tolerance suggesting a primary role of HNE adduct formation in the development of GTN tolerance. |
doi_str_mv | 10.1021/tx4004787 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1534823681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1534823681</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-a8884c4912fc9be8858c6b335ba609ee3499bdc95c39948d7340a368f625a2fe3</originalsourceid><addsrcrecordid>eNptkMtKxDAUQIMozvhY-APSjaAw1TzbZCnjEwYVGcFdSdNbrHSaMUnF2fkL_qJfYnR0Vq7u4p57LhyE9gg-JpiSk_DGMea5zNfQkAiKU4EJXkdDLBVLKZWPA7Tl_TPGJOL5JhpQLoTIZD5E5t62kNg6CU-QTJp5UyV34OxbU-nQ2C65c7bqTRgl_PP942pRxdWisx10uh0lTfdzdgav0Nr5DLrwbbppgtMBkmk0O90Z2EEbtW497P7ObfRwcT4dX6WT28vr8ekk1YzLkGopJTdcEVobVYKUQpqsZEyUOsMKgHGlysooYZhSXFY541izTNYZFZrWwLbR4dI7d_alBx-KWeMNtK3uwPa-ICL-ofGCRPRoiRpnvXdQF3PXzLRbFAQX302LVdPI7v9q-3IG1Yr8ixiBgyWgjS-ebe9iHP-P6AuOIH3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1534823681</pqid></control><display><type>article</type><title>Role of the Lipid Peroxidation Product, 4‑Hydroxynonenal, in the Development of Nitrate Tolerance</title><source>MEDLINE</source><source>ACS Publications</source><creator>D’Souza, Yohan ; Kawamoto, Toshihiro ; Bennett, Brian M</creator><creatorcontrib>D’Souza, Yohan ; Kawamoto, Toshihiro ; Bennett, Brian M</creatorcontrib><description>Tolerance to nitrates such as nitroglycerin (GTN) is associated with oxidative stress, inactivation of aldehyde dehydrogenase 2 (ALDH2), and decreased GTN-induced cGMP accumulation and vasodilation. We hypothesized that GTN-induced inactivation of ALDH2 results in increased 4-hydroxy-2-nonenal (HNE) adduct formation of key proteins involved in GTN bioactivation, and, consequently, an attenuated vasodilator response to GTN (i.e., tolerance). We used an in vivo GTN tolerance model, a cell culture model of nitrate action, and Aldh2–/– mice to assess whether GTN exposure resulted in HNE adduct formation, and whether exogenous HNE affected GTN-induced relaxation and cGMP accumulation. Immunoblot analysis indicated a marked increase in HNE adduct formation in GTN-tolerant porcine kidney epithelial cells (PK1) and in aortae from GTN-tolerant rats and untreated Aldh2–/– mice. Preincubation of PK1 cells with HNE resulted in a dose-dependent decrease in GTN-induced cGMP accumulation, and pretreatment of isolated rat aorta with HNE resulted in dose-dependent decreases in the vasodilator response to GTN, thus mimicking GTN-tolerance. Pretreatment of aortae from Aldh2–/– mice with 10 μM HNE resulted in a desensitized vasodilator response to GTN. In the in vivo rat tolerance model, changes in HNE adduct formation correlated well with the onset of GTN tolerance and tolerance reversal. Furthermore, coadministration of an HNE scavenger during the tolerance induction protocol completely prevented HNE adduct formation and GTN tolerance but did not prevent the inactivation of ALDH2. The data are consistent with a novel mechanism of GTN tolerance suggesting a primary role of HNE adduct formation in the development of GTN tolerance.</description><identifier>ISSN: 0893-228X</identifier><identifier>EISSN: 1520-5010</identifier><identifier>DOI: 10.1021/tx4004787</identifier><identifier>PMID: 24555687</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Aldehyde Dehydrogenase - metabolism ; Aldehydes - chemistry ; Animals ; Drug Tolerance ; Lipid Peroxidation ; LLC-PK1 Cells ; Male ; Mice ; Mice, Inbred C57BL ; Mitochondria, Liver - enzymology ; Nitrates - pharmacology ; Rats ; Rats, Sprague-Dawley ; Swine ; Vasodilation</subject><ispartof>Chemical research in toxicology, 2014-04, Vol.27 (4), p.663-673</ispartof><rights>Copyright © 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-a8884c4912fc9be8858c6b335ba609ee3499bdc95c39948d7340a368f625a2fe3</citedby><cites>FETCH-LOGICAL-a348t-a8884c4912fc9be8858c6b335ba609ee3499bdc95c39948d7340a368f625a2fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/tx4004787$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/tx4004787$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27074,27922,27923,56736,56786</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24555687$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>D’Souza, Yohan</creatorcontrib><creatorcontrib>Kawamoto, Toshihiro</creatorcontrib><creatorcontrib>Bennett, Brian M</creatorcontrib><title>Role of the Lipid Peroxidation Product, 4‑Hydroxynonenal, in the Development of Nitrate Tolerance</title><title>Chemical research in toxicology</title><addtitle>Chem. Res. Toxicol</addtitle><description>Tolerance to nitrates such as nitroglycerin (GTN) is associated with oxidative stress, inactivation of aldehyde dehydrogenase 2 (ALDH2), and decreased GTN-induced cGMP accumulation and vasodilation. We hypothesized that GTN-induced inactivation of ALDH2 results in increased 4-hydroxy-2-nonenal (HNE) adduct formation of key proteins involved in GTN bioactivation, and, consequently, an attenuated vasodilator response to GTN (i.e., tolerance). We used an in vivo GTN tolerance model, a cell culture model of nitrate action, and Aldh2–/– mice to assess whether GTN exposure resulted in HNE adduct formation, and whether exogenous HNE affected GTN-induced relaxation and cGMP accumulation. Immunoblot analysis indicated a marked increase in HNE adduct formation in GTN-tolerant porcine kidney epithelial cells (PK1) and in aortae from GTN-tolerant rats and untreated Aldh2–/– mice. Preincubation of PK1 cells with HNE resulted in a dose-dependent decrease in GTN-induced cGMP accumulation, and pretreatment of isolated rat aorta with HNE resulted in dose-dependent decreases in the vasodilator response to GTN, thus mimicking GTN-tolerance. Pretreatment of aortae from Aldh2–/– mice with 10 μM HNE resulted in a desensitized vasodilator response to GTN. In the in vivo rat tolerance model, changes in HNE adduct formation correlated well with the onset of GTN tolerance and tolerance reversal. Furthermore, coadministration of an HNE scavenger during the tolerance induction protocol completely prevented HNE adduct formation and GTN tolerance but did not prevent the inactivation of ALDH2. The data are consistent with a novel mechanism of GTN tolerance suggesting a primary role of HNE adduct formation in the development of GTN tolerance.</description><subject>Aldehyde Dehydrogenase - metabolism</subject><subject>Aldehydes - chemistry</subject><subject>Animals</subject><subject>Drug Tolerance</subject><subject>Lipid Peroxidation</subject><subject>LLC-PK1 Cells</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mitochondria, Liver - enzymology</subject><subject>Nitrates - pharmacology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Swine</subject><subject>Vasodilation</subject><issn>0893-228X</issn><issn>1520-5010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkMtKxDAUQIMozvhY-APSjaAw1TzbZCnjEwYVGcFdSdNbrHSaMUnF2fkL_qJfYnR0Vq7u4p57LhyE9gg-JpiSk_DGMea5zNfQkAiKU4EJXkdDLBVLKZWPA7Tl_TPGJOL5JhpQLoTIZD5E5t62kNg6CU-QTJp5UyV34OxbU-nQ2C65c7bqTRgl_PP942pRxdWisx10uh0lTfdzdgav0Nr5DLrwbbppgtMBkmk0O90Z2EEbtW497P7ObfRwcT4dX6WT28vr8ekk1YzLkGopJTdcEVobVYKUQpqsZEyUOsMKgHGlysooYZhSXFY541izTNYZFZrWwLbR4dI7d_alBx-KWeMNtK3uwPa-ICL-ofGCRPRoiRpnvXdQF3PXzLRbFAQX302LVdPI7v9q-3IG1Yr8ixiBgyWgjS-ebe9iHP-P6AuOIH3g</recordid><startdate>20140421</startdate><enddate>20140421</enddate><creator>D’Souza, Yohan</creator><creator>Kawamoto, Toshihiro</creator><creator>Bennett, Brian M</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7U7</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope></search><sort><creationdate>20140421</creationdate><title>Role of the Lipid Peroxidation Product, 4‑Hydroxynonenal, in the Development of Nitrate Tolerance</title><author>D’Souza, Yohan ; Kawamoto, Toshihiro ; Bennett, Brian M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-a8884c4912fc9be8858c6b335ba609ee3499bdc95c39948d7340a368f625a2fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aldehyde Dehydrogenase - metabolism</topic><topic>Aldehydes - chemistry</topic><topic>Animals</topic><topic>Drug Tolerance</topic><topic>Lipid Peroxidation</topic><topic>LLC-PK1 Cells</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mitochondria, Liver - enzymology</topic><topic>Nitrates - pharmacology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Swine</topic><topic>Vasodilation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>D’Souza, Yohan</creatorcontrib><creatorcontrib>Kawamoto, Toshihiro</creatorcontrib><creatorcontrib>Bennett, Brian M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Chemical research in toxicology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>D’Souza, Yohan</au><au>Kawamoto, Toshihiro</au><au>Bennett, Brian M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of the Lipid Peroxidation Product, 4‑Hydroxynonenal, in the Development of Nitrate Tolerance</atitle><jtitle>Chemical research in toxicology</jtitle><addtitle>Chem. Res. Toxicol</addtitle><date>2014-04-21</date><risdate>2014</risdate><volume>27</volume><issue>4</issue><spage>663</spage><epage>673</epage><pages>663-673</pages><issn>0893-228X</issn><eissn>1520-5010</eissn><abstract>Tolerance to nitrates such as nitroglycerin (GTN) is associated with oxidative stress, inactivation of aldehyde dehydrogenase 2 (ALDH2), and decreased GTN-induced cGMP accumulation and vasodilation. We hypothesized that GTN-induced inactivation of ALDH2 results in increased 4-hydroxy-2-nonenal (HNE) adduct formation of key proteins involved in GTN bioactivation, and, consequently, an attenuated vasodilator response to GTN (i.e., tolerance). We used an in vivo GTN tolerance model, a cell culture model of nitrate action, and Aldh2–/– mice to assess whether GTN exposure resulted in HNE adduct formation, and whether exogenous HNE affected GTN-induced relaxation and cGMP accumulation. Immunoblot analysis indicated a marked increase in HNE adduct formation in GTN-tolerant porcine kidney epithelial cells (PK1) and in aortae from GTN-tolerant rats and untreated Aldh2–/– mice. Preincubation of PK1 cells with HNE resulted in a dose-dependent decrease in GTN-induced cGMP accumulation, and pretreatment of isolated rat aorta with HNE resulted in dose-dependent decreases in the vasodilator response to GTN, thus mimicking GTN-tolerance. Pretreatment of aortae from Aldh2–/– mice with 10 μM HNE resulted in a desensitized vasodilator response to GTN. In the in vivo rat tolerance model, changes in HNE adduct formation correlated well with the onset of GTN tolerance and tolerance reversal. Furthermore, coadministration of an HNE scavenger during the tolerance induction protocol completely prevented HNE adduct formation and GTN tolerance but did not prevent the inactivation of ALDH2. The data are consistent with a novel mechanism of GTN tolerance suggesting a primary role of HNE adduct formation in the development of GTN tolerance.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24555687</pmid><doi>10.1021/tx4004787</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-228X |
ispartof | Chemical research in toxicology, 2014-04, Vol.27 (4), p.663-673 |
issn | 0893-228X 1520-5010 |
language | eng |
recordid | cdi_proquest_miscellaneous_1534823681 |
source | MEDLINE; ACS Publications |
subjects | Aldehyde Dehydrogenase - metabolism Aldehydes - chemistry Animals Drug Tolerance Lipid Peroxidation LLC-PK1 Cells Male Mice Mice, Inbred C57BL Mitochondria, Liver - enzymology Nitrates - pharmacology Rats Rats, Sprague-Dawley Swine Vasodilation |
title | Role of the Lipid Peroxidation Product, 4‑Hydroxynonenal, in the Development of Nitrate Tolerance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A16%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20the%20Lipid%20Peroxidation%20Product,%204%E2%80%91Hydroxynonenal,%20in%20the%20Development%20of%20Nitrate%20Tolerance&rft.jtitle=Chemical%20research%20in%20toxicology&rft.au=D%E2%80%99Souza,%20Yohan&rft.date=2014-04-21&rft.volume=27&rft.issue=4&rft.spage=663&rft.epage=673&rft.pages=663-673&rft.issn=0893-228X&rft.eissn=1520-5010&rft_id=info:doi/10.1021/tx4004787&rft_dat=%3Cproquest_cross%3E1534823681%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1534823681&rft_id=info:pmid/24555687&rfr_iscdi=true |