Role of the Lipid Peroxidation Product, 4‑Hydroxynonenal, in the Development of Nitrate Tolerance

Tolerance to nitrates such as nitroglycerin (GTN) is associated with oxidative stress, inactivation of aldehyde dehydrogenase 2 (ALDH2), and decreased GTN-induced cGMP accumulation and vasodilation. We hypothesized that GTN-induced inactivation of ALDH2 results in increased 4-hydroxy-2-nonenal (HNE)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical research in toxicology 2014-04, Vol.27 (4), p.663-673
Hauptverfasser: D’Souza, Yohan, Kawamoto, Toshihiro, Bennett, Brian M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 673
container_issue 4
container_start_page 663
container_title Chemical research in toxicology
container_volume 27
creator D’Souza, Yohan
Kawamoto, Toshihiro
Bennett, Brian M
description Tolerance to nitrates such as nitroglycerin (GTN) is associated with oxidative stress, inactivation of aldehyde dehydrogenase 2 (ALDH2), and decreased GTN-induced cGMP accumulation and vasodilation. We hypothesized that GTN-induced inactivation of ALDH2 results in increased 4-hydroxy-2-nonenal (HNE) adduct formation of key proteins involved in GTN bioactivation, and, consequently, an attenuated vasodilator response to GTN (i.e., tolerance). We used an in vivo GTN tolerance model, a cell culture model of nitrate action, and Aldh2–/– mice to assess whether GTN exposure resulted in HNE adduct formation, and whether exogenous HNE affected GTN-induced relaxation and cGMP accumulation. Immunoblot analysis indicated a marked increase in HNE adduct formation in GTN-tolerant porcine kidney epithelial cells (PK1) and in aortae from GTN-tolerant rats and untreated Aldh2–/– mice. Preincubation of PK1 cells with HNE resulted in a dose-dependent decrease in GTN-induced cGMP accumulation, and pretreatment of isolated rat aorta with HNE resulted in dose-dependent decreases in the vasodilator response to GTN, thus mimicking GTN-tolerance. Pretreatment of aortae from Aldh2–/– mice with 10 μM HNE resulted in a desensitized vasodilator response to GTN. In the in vivo rat tolerance model, changes in HNE adduct formation correlated well with the onset of GTN tolerance and tolerance reversal. Furthermore, coadministration of an HNE scavenger during the tolerance induction protocol completely prevented HNE adduct formation and GTN tolerance but did not prevent the inactivation of ALDH2. The data are consistent with a novel mechanism of GTN tolerance suggesting a primary role of HNE adduct formation in the development of GTN tolerance.
doi_str_mv 10.1021/tx4004787
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1534823681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1534823681</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-a8884c4912fc9be8858c6b335ba609ee3499bdc95c39948d7340a368f625a2fe3</originalsourceid><addsrcrecordid>eNptkMtKxDAUQIMozvhY-APSjaAw1TzbZCnjEwYVGcFdSdNbrHSaMUnF2fkL_qJfYnR0Vq7u4p57LhyE9gg-JpiSk_DGMea5zNfQkAiKU4EJXkdDLBVLKZWPA7Tl_TPGJOL5JhpQLoTIZD5E5t62kNg6CU-QTJp5UyV34OxbU-nQ2C65c7bqTRgl_PP942pRxdWisx10uh0lTfdzdgav0Nr5DLrwbbppgtMBkmk0O90Z2EEbtW497P7ObfRwcT4dX6WT28vr8ekk1YzLkGopJTdcEVobVYKUQpqsZEyUOsMKgHGlysooYZhSXFY541izTNYZFZrWwLbR4dI7d_alBx-KWeMNtK3uwPa-ICL-ofGCRPRoiRpnvXdQF3PXzLRbFAQX302LVdPI7v9q-3IG1Yr8ixiBgyWgjS-ebe9iHP-P6AuOIH3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1534823681</pqid></control><display><type>article</type><title>Role of the Lipid Peroxidation Product, 4‑Hydroxynonenal, in the Development of Nitrate Tolerance</title><source>MEDLINE</source><source>ACS Publications</source><creator>D’Souza, Yohan ; Kawamoto, Toshihiro ; Bennett, Brian M</creator><creatorcontrib>D’Souza, Yohan ; Kawamoto, Toshihiro ; Bennett, Brian M</creatorcontrib><description>Tolerance to nitrates such as nitroglycerin (GTN) is associated with oxidative stress, inactivation of aldehyde dehydrogenase 2 (ALDH2), and decreased GTN-induced cGMP accumulation and vasodilation. We hypothesized that GTN-induced inactivation of ALDH2 results in increased 4-hydroxy-2-nonenal (HNE) adduct formation of key proteins involved in GTN bioactivation, and, consequently, an attenuated vasodilator response to GTN (i.e., tolerance). We used an in vivo GTN tolerance model, a cell culture model of nitrate action, and Aldh2–/– mice to assess whether GTN exposure resulted in HNE adduct formation, and whether exogenous HNE affected GTN-induced relaxation and cGMP accumulation. Immunoblot analysis indicated a marked increase in HNE adduct formation in GTN-tolerant porcine kidney epithelial cells (PK1) and in aortae from GTN-tolerant rats and untreated Aldh2–/– mice. Preincubation of PK1 cells with HNE resulted in a dose-dependent decrease in GTN-induced cGMP accumulation, and pretreatment of isolated rat aorta with HNE resulted in dose-dependent decreases in the vasodilator response to GTN, thus mimicking GTN-tolerance. Pretreatment of aortae from Aldh2–/– mice with 10 μM HNE resulted in a desensitized vasodilator response to GTN. In the in vivo rat tolerance model, changes in HNE adduct formation correlated well with the onset of GTN tolerance and tolerance reversal. Furthermore, coadministration of an HNE scavenger during the tolerance induction protocol completely prevented HNE adduct formation and GTN tolerance but did not prevent the inactivation of ALDH2. The data are consistent with a novel mechanism of GTN tolerance suggesting a primary role of HNE adduct formation in the development of GTN tolerance.</description><identifier>ISSN: 0893-228X</identifier><identifier>EISSN: 1520-5010</identifier><identifier>DOI: 10.1021/tx4004787</identifier><identifier>PMID: 24555687</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Aldehyde Dehydrogenase - metabolism ; Aldehydes - chemistry ; Animals ; Drug Tolerance ; Lipid Peroxidation ; LLC-PK1 Cells ; Male ; Mice ; Mice, Inbred C57BL ; Mitochondria, Liver - enzymology ; Nitrates - pharmacology ; Rats ; Rats, Sprague-Dawley ; Swine ; Vasodilation</subject><ispartof>Chemical research in toxicology, 2014-04, Vol.27 (4), p.663-673</ispartof><rights>Copyright © 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-a8884c4912fc9be8858c6b335ba609ee3499bdc95c39948d7340a368f625a2fe3</citedby><cites>FETCH-LOGICAL-a348t-a8884c4912fc9be8858c6b335ba609ee3499bdc95c39948d7340a368f625a2fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/tx4004787$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/tx4004787$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27074,27922,27923,56736,56786</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24555687$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>D’Souza, Yohan</creatorcontrib><creatorcontrib>Kawamoto, Toshihiro</creatorcontrib><creatorcontrib>Bennett, Brian M</creatorcontrib><title>Role of the Lipid Peroxidation Product, 4‑Hydroxynonenal, in the Development of Nitrate Tolerance</title><title>Chemical research in toxicology</title><addtitle>Chem. Res. Toxicol</addtitle><description>Tolerance to nitrates such as nitroglycerin (GTN) is associated with oxidative stress, inactivation of aldehyde dehydrogenase 2 (ALDH2), and decreased GTN-induced cGMP accumulation and vasodilation. We hypothesized that GTN-induced inactivation of ALDH2 results in increased 4-hydroxy-2-nonenal (HNE) adduct formation of key proteins involved in GTN bioactivation, and, consequently, an attenuated vasodilator response to GTN (i.e., tolerance). We used an in vivo GTN tolerance model, a cell culture model of nitrate action, and Aldh2–/– mice to assess whether GTN exposure resulted in HNE adduct formation, and whether exogenous HNE affected GTN-induced relaxation and cGMP accumulation. Immunoblot analysis indicated a marked increase in HNE adduct formation in GTN-tolerant porcine kidney epithelial cells (PK1) and in aortae from GTN-tolerant rats and untreated Aldh2–/– mice. Preincubation of PK1 cells with HNE resulted in a dose-dependent decrease in GTN-induced cGMP accumulation, and pretreatment of isolated rat aorta with HNE resulted in dose-dependent decreases in the vasodilator response to GTN, thus mimicking GTN-tolerance. Pretreatment of aortae from Aldh2–/– mice with 10 μM HNE resulted in a desensitized vasodilator response to GTN. In the in vivo rat tolerance model, changes in HNE adduct formation correlated well with the onset of GTN tolerance and tolerance reversal. Furthermore, coadministration of an HNE scavenger during the tolerance induction protocol completely prevented HNE adduct formation and GTN tolerance but did not prevent the inactivation of ALDH2. The data are consistent with a novel mechanism of GTN tolerance suggesting a primary role of HNE adduct formation in the development of GTN tolerance.</description><subject>Aldehyde Dehydrogenase - metabolism</subject><subject>Aldehydes - chemistry</subject><subject>Animals</subject><subject>Drug Tolerance</subject><subject>Lipid Peroxidation</subject><subject>LLC-PK1 Cells</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mitochondria, Liver - enzymology</subject><subject>Nitrates - pharmacology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Swine</subject><subject>Vasodilation</subject><issn>0893-228X</issn><issn>1520-5010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkMtKxDAUQIMozvhY-APSjaAw1TzbZCnjEwYVGcFdSdNbrHSaMUnF2fkL_qJfYnR0Vq7u4p57LhyE9gg-JpiSk_DGMea5zNfQkAiKU4EJXkdDLBVLKZWPA7Tl_TPGJOL5JhpQLoTIZD5E5t62kNg6CU-QTJp5UyV34OxbU-nQ2C65c7bqTRgl_PP942pRxdWisx10uh0lTfdzdgav0Nr5DLrwbbppgtMBkmk0O90Z2EEbtW497P7ObfRwcT4dX6WT28vr8ekk1YzLkGopJTdcEVobVYKUQpqsZEyUOsMKgHGlysooYZhSXFY541izTNYZFZrWwLbR4dI7d_alBx-KWeMNtK3uwPa-ICL-ofGCRPRoiRpnvXdQF3PXzLRbFAQX302LVdPI7v9q-3IG1Yr8ixiBgyWgjS-ebe9iHP-P6AuOIH3g</recordid><startdate>20140421</startdate><enddate>20140421</enddate><creator>D’Souza, Yohan</creator><creator>Kawamoto, Toshihiro</creator><creator>Bennett, Brian M</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7U7</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope></search><sort><creationdate>20140421</creationdate><title>Role of the Lipid Peroxidation Product, 4‑Hydroxynonenal, in the Development of Nitrate Tolerance</title><author>D’Souza, Yohan ; Kawamoto, Toshihiro ; Bennett, Brian M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-a8884c4912fc9be8858c6b335ba609ee3499bdc95c39948d7340a368f625a2fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aldehyde Dehydrogenase - metabolism</topic><topic>Aldehydes - chemistry</topic><topic>Animals</topic><topic>Drug Tolerance</topic><topic>Lipid Peroxidation</topic><topic>LLC-PK1 Cells</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mitochondria, Liver - enzymology</topic><topic>Nitrates - pharmacology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Swine</topic><topic>Vasodilation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>D’Souza, Yohan</creatorcontrib><creatorcontrib>Kawamoto, Toshihiro</creatorcontrib><creatorcontrib>Bennett, Brian M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Chemical research in toxicology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>D’Souza, Yohan</au><au>Kawamoto, Toshihiro</au><au>Bennett, Brian M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of the Lipid Peroxidation Product, 4‑Hydroxynonenal, in the Development of Nitrate Tolerance</atitle><jtitle>Chemical research in toxicology</jtitle><addtitle>Chem. Res. Toxicol</addtitle><date>2014-04-21</date><risdate>2014</risdate><volume>27</volume><issue>4</issue><spage>663</spage><epage>673</epage><pages>663-673</pages><issn>0893-228X</issn><eissn>1520-5010</eissn><abstract>Tolerance to nitrates such as nitroglycerin (GTN) is associated with oxidative stress, inactivation of aldehyde dehydrogenase 2 (ALDH2), and decreased GTN-induced cGMP accumulation and vasodilation. We hypothesized that GTN-induced inactivation of ALDH2 results in increased 4-hydroxy-2-nonenal (HNE) adduct formation of key proteins involved in GTN bioactivation, and, consequently, an attenuated vasodilator response to GTN (i.e., tolerance). We used an in vivo GTN tolerance model, a cell culture model of nitrate action, and Aldh2–/– mice to assess whether GTN exposure resulted in HNE adduct formation, and whether exogenous HNE affected GTN-induced relaxation and cGMP accumulation. Immunoblot analysis indicated a marked increase in HNE adduct formation in GTN-tolerant porcine kidney epithelial cells (PK1) and in aortae from GTN-tolerant rats and untreated Aldh2–/– mice. Preincubation of PK1 cells with HNE resulted in a dose-dependent decrease in GTN-induced cGMP accumulation, and pretreatment of isolated rat aorta with HNE resulted in dose-dependent decreases in the vasodilator response to GTN, thus mimicking GTN-tolerance. Pretreatment of aortae from Aldh2–/– mice with 10 μM HNE resulted in a desensitized vasodilator response to GTN. In the in vivo rat tolerance model, changes in HNE adduct formation correlated well with the onset of GTN tolerance and tolerance reversal. Furthermore, coadministration of an HNE scavenger during the tolerance induction protocol completely prevented HNE adduct formation and GTN tolerance but did not prevent the inactivation of ALDH2. The data are consistent with a novel mechanism of GTN tolerance suggesting a primary role of HNE adduct formation in the development of GTN tolerance.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24555687</pmid><doi>10.1021/tx4004787</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0893-228X
ispartof Chemical research in toxicology, 2014-04, Vol.27 (4), p.663-673
issn 0893-228X
1520-5010
language eng
recordid cdi_proquest_miscellaneous_1534823681
source MEDLINE; ACS Publications
subjects Aldehyde Dehydrogenase - metabolism
Aldehydes - chemistry
Animals
Drug Tolerance
Lipid Peroxidation
LLC-PK1 Cells
Male
Mice
Mice, Inbred C57BL
Mitochondria, Liver - enzymology
Nitrates - pharmacology
Rats
Rats, Sprague-Dawley
Swine
Vasodilation
title Role of the Lipid Peroxidation Product, 4‑Hydroxynonenal, in the Development of Nitrate Tolerance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A16%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20the%20Lipid%20Peroxidation%20Product,%204%E2%80%91Hydroxynonenal,%20in%20the%20Development%20of%20Nitrate%20Tolerance&rft.jtitle=Chemical%20research%20in%20toxicology&rft.au=D%E2%80%99Souza,%20Yohan&rft.date=2014-04-21&rft.volume=27&rft.issue=4&rft.spage=663&rft.epage=673&rft.pages=663-673&rft.issn=0893-228X&rft.eissn=1520-5010&rft_id=info:doi/10.1021/tx4004787&rft_dat=%3Cproquest_cross%3E1534823681%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1534823681&rft_id=info:pmid/24555687&rfr_iscdi=true