Thermal Safety Simulations of Transient Temperature Rise during Acoustic Radiation Force-Based Ultrasound Elastography
Abstract Ultrasound transient elastography is a new diagnostic imaging technique that uses acoustic radiation force to produce motion in solid tissue via a high-intensity, long-duration “push” beam. In our previous work, we developed analytical models for calculating transient temperature rise, both...
Gespeichert in:
Veröffentlicht in: | Ultrasound in medicine & biology 2014-05, Vol.40 (5), p.1001-1014 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1014 |
---|---|
container_issue | 5 |
container_start_page | 1001 |
container_title | Ultrasound in medicine & biology |
container_volume | 40 |
creator | Liu, Yunbo Herman, Bruce A Soneson, Joshua E Harris, Gerald R |
description | Abstract Ultrasound transient elastography is a new diagnostic imaging technique that uses acoustic radiation force to produce motion in solid tissue via a high-intensity, long-duration “push” beam. In our previous work, we developed analytical models for calculating transient temperature rise, both in soft tissue and at a bone/soft tissue interface, during a single acoustic radiation force impulse (ARFI) imaging frame. The present study expands on these temperature rise calculations, providing applicable range assessment and error analysis for a single ARFI frame. Furthermore, a “virtual source” approach is described for temperature and thermal dose calculation under multiple ARFI frames. By use of this method, the effect of inter-frame cooling duration on temperature prediction is analyzed, and a thermal buildup phenomenon is revealed. Thermal safety assessment indicates that the thermal dose values, especially at the absorptive bone/soft tissue interface, could approach recommended dose thresholds if the cooling interval of multiple-frame ARFI elastography is too short. |
doi_str_mv | 10.1016/j.ultrasmedbio.2013.11.015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1534815363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0301562913011897</els_id><sourcerecordid>1534815363</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-b7b03d3e67743d3cbeb09e82191d7f4270c786274a15214de20646dec7fb12773</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhi0EokvhLyCLE5dsPXYSJxyQSmkLUiWk7lbiZjn2pPWSxFvbqbT_Hm-3IMSpF8_B7ztfzxDyAdgSGNQnm-U8pKDjiLZzfskZiCXAkkH1giygkW3BW_j5kiyYYFBUNW-PyJsYN4wxWQv5mhzxsiqbuoIFeVjfYRj1QFe6x7SjKzfOg07OT5H6nq6DnqLDKdE1jlsMOs0B6bWLSO0c3HRLT42fY3KGXmvrHo30wgeDxRcd0dKbx079PFl6PuiY_G3Q27vdW_Kq10PEd0_xmNxcnK_PvhVXPy6_n51eFaYSZSo62TFhBdZSljmaDjvWYsOhBSv7kktmZFNzWWqoOJQWOavL2qKRfQdcSnFMPh7yboO_nzEmNbpocBj0hLlvBblMk59aPEMKglVNJZss_XSQmuBjDNirbXCjDjsFTO0RqY36F5HaI1IAKiPK5vdPdeYuf_-1_mGSBV8PAsyLeXAYVDQZgUHrApqkrHfPq_P5vzRmcJMzeviFO4wbP4cpr16Bilwxtdofy_5W8pQATSvFb3Bcv4M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1513058578</pqid></control><display><type>article</type><title>Thermal Safety Simulations of Transient Temperature Rise during Acoustic Radiation Force-Based Ultrasound Elastography</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Liu, Yunbo ; Herman, Bruce A ; Soneson, Joshua E ; Harris, Gerald R</creator><creatorcontrib>Liu, Yunbo ; Herman, Bruce A ; Soneson, Joshua E ; Harris, Gerald R</creatorcontrib><description>Abstract Ultrasound transient elastography is a new diagnostic imaging technique that uses acoustic radiation force to produce motion in solid tissue via a high-intensity, long-duration “push” beam. In our previous work, we developed analytical models for calculating transient temperature rise, both in soft tissue and at a bone/soft tissue interface, during a single acoustic radiation force impulse (ARFI) imaging frame. The present study expands on these temperature rise calculations, providing applicable range assessment and error analysis for a single ARFI frame. Furthermore, a “virtual source” approach is described for temperature and thermal dose calculation under multiple ARFI frames. By use of this method, the effect of inter-frame cooling duration on temperature prediction is analyzed, and a thermal buildup phenomenon is revealed. Thermal safety assessment indicates that the thermal dose values, especially at the absorptive bone/soft tissue interface, could approach recommended dose thresholds if the cooling interval of multiple-frame ARFI elastography is too short.</description><identifier>ISSN: 0301-5629</identifier><identifier>EISSN: 1879-291X</identifier><identifier>DOI: 10.1016/j.ultrasmedbio.2013.11.015</identifier><identifier>PMID: 24548651</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Acoustic output ; Acoustic radiation force impulse ; Algorithms ; Computer Simulation ; Elasticity Imaging Techniques - methods ; Exposure regulation ; Hot Temperature ; Models, Biological ; Radiation force elastography ; Radiology ; Reproducibility of Results ; Safety - statistics & numerical data ; Thermal Conductivity ; Transient temperature rise ; Ultrasonic heating</subject><ispartof>Ultrasound in medicine & biology, 2014-05, Vol.40 (5), p.1001-1014</ispartof><rights>2014</rights><rights>Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-b7b03d3e67743d3cbeb09e82191d7f4270c786274a15214de20646dec7fb12773</citedby><cites>FETCH-LOGICAL-c534t-b7b03d3e67743d3cbeb09e82191d7f4270c786274a15214de20646dec7fb12773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ultrasmedbio.2013.11.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24548651$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Yunbo</creatorcontrib><creatorcontrib>Herman, Bruce A</creatorcontrib><creatorcontrib>Soneson, Joshua E</creatorcontrib><creatorcontrib>Harris, Gerald R</creatorcontrib><title>Thermal Safety Simulations of Transient Temperature Rise during Acoustic Radiation Force-Based Ultrasound Elastography</title><title>Ultrasound in medicine & biology</title><addtitle>Ultrasound Med Biol</addtitle><description>Abstract Ultrasound transient elastography is a new diagnostic imaging technique that uses acoustic radiation force to produce motion in solid tissue via a high-intensity, long-duration “push” beam. In our previous work, we developed analytical models for calculating transient temperature rise, both in soft tissue and at a bone/soft tissue interface, during a single acoustic radiation force impulse (ARFI) imaging frame. The present study expands on these temperature rise calculations, providing applicable range assessment and error analysis for a single ARFI frame. Furthermore, a “virtual source” approach is described for temperature and thermal dose calculation under multiple ARFI frames. By use of this method, the effect of inter-frame cooling duration on temperature prediction is analyzed, and a thermal buildup phenomenon is revealed. Thermal safety assessment indicates that the thermal dose values, especially at the absorptive bone/soft tissue interface, could approach recommended dose thresholds if the cooling interval of multiple-frame ARFI elastography is too short.</description><subject>Acoustic output</subject><subject>Acoustic radiation force impulse</subject><subject>Algorithms</subject><subject>Computer Simulation</subject><subject>Elasticity Imaging Techniques - methods</subject><subject>Exposure regulation</subject><subject>Hot Temperature</subject><subject>Models, Biological</subject><subject>Radiation force elastography</subject><subject>Radiology</subject><subject>Reproducibility of Results</subject><subject>Safety - statistics & numerical data</subject><subject>Thermal Conductivity</subject><subject>Transient temperature rise</subject><subject>Ultrasonic heating</subject><issn>0301-5629</issn><issn>1879-291X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkk1v1DAQhi0EokvhLyCLE5dsPXYSJxyQSmkLUiWk7lbiZjn2pPWSxFvbqbT_Hm-3IMSpF8_B7ztfzxDyAdgSGNQnm-U8pKDjiLZzfskZiCXAkkH1giygkW3BW_j5kiyYYFBUNW-PyJsYN4wxWQv5mhzxsiqbuoIFeVjfYRj1QFe6x7SjKzfOg07OT5H6nq6DnqLDKdE1jlsMOs0B6bWLSO0c3HRLT42fY3KGXmvrHo30wgeDxRcd0dKbx079PFl6PuiY_G3Q27vdW_Kq10PEd0_xmNxcnK_PvhVXPy6_n51eFaYSZSo62TFhBdZSljmaDjvWYsOhBSv7kktmZFNzWWqoOJQWOavL2qKRfQdcSnFMPh7yboO_nzEmNbpocBj0hLlvBblMk59aPEMKglVNJZss_XSQmuBjDNirbXCjDjsFTO0RqY36F5HaI1IAKiPK5vdPdeYuf_-1_mGSBV8PAsyLeXAYVDQZgUHrApqkrHfPq_P5vzRmcJMzeviFO4wbP4cpr16Bilwxtdofy_5W8pQATSvFb3Bcv4M</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Liu, Yunbo</creator><creator>Herman, Bruce A</creator><creator>Soneson, Joshua E</creator><creator>Harris, Gerald R</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20140501</creationdate><title>Thermal Safety Simulations of Transient Temperature Rise during Acoustic Radiation Force-Based Ultrasound Elastography</title><author>Liu, Yunbo ; Herman, Bruce A ; Soneson, Joshua E ; Harris, Gerald R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-b7b03d3e67743d3cbeb09e82191d7f4270c786274a15214de20646dec7fb12773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acoustic output</topic><topic>Acoustic radiation force impulse</topic><topic>Algorithms</topic><topic>Computer Simulation</topic><topic>Elasticity Imaging Techniques - methods</topic><topic>Exposure regulation</topic><topic>Hot Temperature</topic><topic>Models, Biological</topic><topic>Radiation force elastography</topic><topic>Radiology</topic><topic>Reproducibility of Results</topic><topic>Safety - statistics & numerical data</topic><topic>Thermal Conductivity</topic><topic>Transient temperature rise</topic><topic>Ultrasonic heating</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yunbo</creatorcontrib><creatorcontrib>Herman, Bruce A</creatorcontrib><creatorcontrib>Soneson, Joshua E</creatorcontrib><creatorcontrib>Harris, Gerald R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Ultrasound in medicine & biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yunbo</au><au>Herman, Bruce A</au><au>Soneson, Joshua E</au><au>Harris, Gerald R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Safety Simulations of Transient Temperature Rise during Acoustic Radiation Force-Based Ultrasound Elastography</atitle><jtitle>Ultrasound in medicine & biology</jtitle><addtitle>Ultrasound Med Biol</addtitle><date>2014-05-01</date><risdate>2014</risdate><volume>40</volume><issue>5</issue><spage>1001</spage><epage>1014</epage><pages>1001-1014</pages><issn>0301-5629</issn><eissn>1879-291X</eissn><abstract>Abstract Ultrasound transient elastography is a new diagnostic imaging technique that uses acoustic radiation force to produce motion in solid tissue via a high-intensity, long-duration “push” beam. In our previous work, we developed analytical models for calculating transient temperature rise, both in soft tissue and at a bone/soft tissue interface, during a single acoustic radiation force impulse (ARFI) imaging frame. The present study expands on these temperature rise calculations, providing applicable range assessment and error analysis for a single ARFI frame. Furthermore, a “virtual source” approach is described for temperature and thermal dose calculation under multiple ARFI frames. By use of this method, the effect of inter-frame cooling duration on temperature prediction is analyzed, and a thermal buildup phenomenon is revealed. Thermal safety assessment indicates that the thermal dose values, especially at the absorptive bone/soft tissue interface, could approach recommended dose thresholds if the cooling interval of multiple-frame ARFI elastography is too short.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>24548651</pmid><doi>10.1016/j.ultrasmedbio.2013.11.015</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0301-5629 |
ispartof | Ultrasound in medicine & biology, 2014-05, Vol.40 (5), p.1001-1014 |
issn | 0301-5629 1879-291X |
language | eng |
recordid | cdi_proquest_miscellaneous_1534815363 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Acoustic output Acoustic radiation force impulse Algorithms Computer Simulation Elasticity Imaging Techniques - methods Exposure regulation Hot Temperature Models, Biological Radiation force elastography Radiology Reproducibility of Results Safety - statistics & numerical data Thermal Conductivity Transient temperature rise Ultrasonic heating |
title | Thermal Safety Simulations of Transient Temperature Rise during Acoustic Radiation Force-Based Ultrasound Elastography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A40%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Safety%20Simulations%20of%20Transient%20Temperature%20Rise%20during%20Acoustic%20Radiation%20Force-Based%20Ultrasound%20Elastography&rft.jtitle=Ultrasound%20in%20medicine%20&%20biology&rft.au=Liu,%20Yunbo&rft.date=2014-05-01&rft.volume=40&rft.issue=5&rft.spage=1001&rft.epage=1014&rft.pages=1001-1014&rft.issn=0301-5629&rft.eissn=1879-291X&rft_id=info:doi/10.1016/j.ultrasmedbio.2013.11.015&rft_dat=%3Cproquest_cross%3E1534815363%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1513058578&rft_id=info:pmid/24548651&rft_els_id=S0301562913011897&rfr_iscdi=true |