Nonspecific Prion Protein–Nucleic Acid Interactions Lead to Different Aggregates and Cytotoxic Species
A misfolded form of the prion protein (PrP) is the primary culprit in mammalian prion diseases. It has been shown that nucleic acids catalyze the misfolding of cellular PrP into a scrapie-like conformer. It has also been observed that the interaction of PrP with nucleic acids is nonspecific and that...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 2012-07, Vol.51 (27), p.5402-5413 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5413 |
---|---|
container_issue | 27 |
container_start_page | 5402 |
container_title | Biochemistry (Easton) |
container_volume | 51 |
creator | Macedo, Bruno Millen, Thiago A Braga, Carolina A. C. A Gomes, Mariana P. B Ferreira, Priscila S Kraineva, Julia Winter, Roland Silva, Jerson L Cordeiro, Yraima |
description | A misfolded form of the prion protein (PrP) is the primary culprit in mammalian prion diseases. It has been shown that nucleic acids catalyze the misfolding of cellular PrP into a scrapie-like conformer. It has also been observed that the interaction of PrP with nucleic acids is nonspecific and that the complex can be toxic to cultured cells. No direct correlation has yet been drawn between changes in PrP structure and toxicity due to nucleic acid binding. Here we asked whether different aggregation, stability, and toxicity effects are detected when nonrelated DNA sequences interact with recombinant PrP. Using spectroscopic techniques to analyze PrP tertiary and secondary structure and cellular assays to assess toxicity, we found that rPrP–DNA interactions lead to different aggregated species, depending on the sequence and size of the oligonucleotide tested. A 21-mer DNA sequence (D67) induced higher levels of aggregation and also dissimilar structural changes in rPrP, compared to binding to oligonucleotides with the same length and different nucleotide sequences or different GC contents. The rPrP–D67 complex induced significant cell dysfunction, which appears to be correlated with the biophysical properties of the complex. Although sequence specificity is not apparent for PrP–nucleic acid interactions, we believe that particular nucleic acid patterns, possibly related to GC content, oligonucleotide length, and structure, govern PrP recognition. Understanding the structural and cellular effects observed for PrP–nucleic acid complexes may shed light on the still mysterious pathology of the prion protein. |
doi_str_mv | 10.1021/bi300440e |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1534810098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1534810098</sourcerecordid><originalsourceid>FETCH-LOGICAL-a414t-c579c4eff335ff9ec98ea8ab1774dc0736bd0464ed9e9869970eecc375cd76893</originalsourceid><addsrcrecordid>eNptkM1KAzEQx4Motn4cfAHZi6CH1cludrM5lvoJpQrqeUmzk5rSbmqSBXvzHXxDn8RIa09eZpjhNz-YPyEnFC4pZPRqYnIAxgB3SJ8WGaRMiGKX9AGgTDNRQo8ceD-LIwPO9kkvy0oRL3mfvI1t65eojDYqeXLGtrHagKb9_vwad2qOcT9Qpkke2oBOqhARn4xQNkmwybXRGh22IRlMpw6nMqBPZNskw1WwwX7E4-dfO_ojsqfl3OPxph-S19ubl-F9Onq8exgORqlklIVUFVwohlrneaG1QCUqlJWcUM5Zo4Dn5aQBVjJsBIqqFIIDolI5L1TDy0rkh-R87V06-96hD_XCeIXzuWzRdr6mRc4qCiCqiF6sUeWs9w51vXRmId2qplD_Bltvg43s6UbbTRbYbMm_JCNwtgak8vXMdq6NX_4j-gGc4oDP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1534810098</pqid></control><display><type>article</type><title>Nonspecific Prion Protein–Nucleic Acid Interactions Lead to Different Aggregates and Cytotoxic Species</title><source>MEDLINE</source><source>ACS Publications</source><creator>Macedo, Bruno ; Millen, Thiago A ; Braga, Carolina A. C. A ; Gomes, Mariana P. B ; Ferreira, Priscila S ; Kraineva, Julia ; Winter, Roland ; Silva, Jerson L ; Cordeiro, Yraima</creator><creatorcontrib>Macedo, Bruno ; Millen, Thiago A ; Braga, Carolina A. C. A ; Gomes, Mariana P. B ; Ferreira, Priscila S ; Kraineva, Julia ; Winter, Roland ; Silva, Jerson L ; Cordeiro, Yraima</creatorcontrib><description>A misfolded form of the prion protein (PrP) is the primary culprit in mammalian prion diseases. It has been shown that nucleic acids catalyze the misfolding of cellular PrP into a scrapie-like conformer. It has also been observed that the interaction of PrP with nucleic acids is nonspecific and that the complex can be toxic to cultured cells. No direct correlation has yet been drawn between changes in PrP structure and toxicity due to nucleic acid binding. Here we asked whether different aggregation, stability, and toxicity effects are detected when nonrelated DNA sequences interact with recombinant PrP. Using spectroscopic techniques to analyze PrP tertiary and secondary structure and cellular assays to assess toxicity, we found that rPrP–DNA interactions lead to different aggregated species, depending on the sequence and size of the oligonucleotide tested. A 21-mer DNA sequence (D67) induced higher levels of aggregation and also dissimilar structural changes in rPrP, compared to binding to oligonucleotides with the same length and different nucleotide sequences or different GC contents. The rPrP–D67 complex induced significant cell dysfunction, which appears to be correlated with the biophysical properties of the complex. Although sequence specificity is not apparent for PrP–nucleic acid interactions, we believe that particular nucleic acid patterns, possibly related to GC content, oligonucleotide length, and structure, govern PrP recognition. Understanding the structural and cellular effects observed for PrP–nucleic acid complexes may shed light on the still mysterious pathology of the prion protein.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi300440e</identifier><identifier>PMID: 22691027</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amino Acid Sequence ; Base Sequence ; Cell Line, Tumor ; Cytotoxins - chemistry ; Cytotoxins - metabolism ; Cytotoxins - toxicity ; DNA - genetics ; DNA - metabolism ; Humans ; Molecular Sequence Data ; Peptide Fragments - chemistry ; Peptide Fragments - metabolism ; Peptide Fragments - toxicity ; Prions - chemistry ; Prions - metabolism ; Prions - toxicity ; Protein Binding ; Protein Multimerization ; Protein Stability ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Solubility</subject><ispartof>Biochemistry (Easton), 2012-07, Vol.51 (27), p.5402-5413</ispartof><rights>Copyright © 2012 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a414t-c579c4eff335ff9ec98ea8ab1774dc0736bd0464ed9e9869970eecc375cd76893</citedby><cites>FETCH-LOGICAL-a414t-c579c4eff335ff9ec98ea8ab1774dc0736bd0464ed9e9869970eecc375cd76893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bi300440e$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bi300440e$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22691027$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Macedo, Bruno</creatorcontrib><creatorcontrib>Millen, Thiago A</creatorcontrib><creatorcontrib>Braga, Carolina A. C. A</creatorcontrib><creatorcontrib>Gomes, Mariana P. B</creatorcontrib><creatorcontrib>Ferreira, Priscila S</creatorcontrib><creatorcontrib>Kraineva, Julia</creatorcontrib><creatorcontrib>Winter, Roland</creatorcontrib><creatorcontrib>Silva, Jerson L</creatorcontrib><creatorcontrib>Cordeiro, Yraima</creatorcontrib><title>Nonspecific Prion Protein–Nucleic Acid Interactions Lead to Different Aggregates and Cytotoxic Species</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>A misfolded form of the prion protein (PrP) is the primary culprit in mammalian prion diseases. It has been shown that nucleic acids catalyze the misfolding of cellular PrP into a scrapie-like conformer. It has also been observed that the interaction of PrP with nucleic acids is nonspecific and that the complex can be toxic to cultured cells. No direct correlation has yet been drawn between changes in PrP structure and toxicity due to nucleic acid binding. Here we asked whether different aggregation, stability, and toxicity effects are detected when nonrelated DNA sequences interact with recombinant PrP. Using spectroscopic techniques to analyze PrP tertiary and secondary structure and cellular assays to assess toxicity, we found that rPrP–DNA interactions lead to different aggregated species, depending on the sequence and size of the oligonucleotide tested. A 21-mer DNA sequence (D67) induced higher levels of aggregation and also dissimilar structural changes in rPrP, compared to binding to oligonucleotides with the same length and different nucleotide sequences or different GC contents. The rPrP–D67 complex induced significant cell dysfunction, which appears to be correlated with the biophysical properties of the complex. Although sequence specificity is not apparent for PrP–nucleic acid interactions, we believe that particular nucleic acid patterns, possibly related to GC content, oligonucleotide length, and structure, govern PrP recognition. Understanding the structural and cellular effects observed for PrP–nucleic acid complexes may shed light on the still mysterious pathology of the prion protein.</description><subject>Amino Acid Sequence</subject><subject>Base Sequence</subject><subject>Cell Line, Tumor</subject><subject>Cytotoxins - chemistry</subject><subject>Cytotoxins - metabolism</subject><subject>Cytotoxins - toxicity</subject><subject>DNA - genetics</subject><subject>DNA - metabolism</subject><subject>Humans</subject><subject>Molecular Sequence Data</subject><subject>Peptide Fragments - chemistry</subject><subject>Peptide Fragments - metabolism</subject><subject>Peptide Fragments - toxicity</subject><subject>Prions - chemistry</subject><subject>Prions - metabolism</subject><subject>Prions - toxicity</subject><subject>Protein Binding</subject><subject>Protein Multimerization</subject><subject>Protein Stability</subject><subject>Protein Structure, Quaternary</subject><subject>Protein Structure, Secondary</subject><subject>Solubility</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkM1KAzEQx4Motn4cfAHZi6CH1cludrM5lvoJpQrqeUmzk5rSbmqSBXvzHXxDn8RIa09eZpjhNz-YPyEnFC4pZPRqYnIAxgB3SJ8WGaRMiGKX9AGgTDNRQo8ceD-LIwPO9kkvy0oRL3mfvI1t65eojDYqeXLGtrHagKb9_vwad2qOcT9Qpkke2oBOqhARn4xQNkmwybXRGh22IRlMpw6nMqBPZNskw1WwwX7E4-dfO_ojsqfl3OPxph-S19ubl-F9Onq8exgORqlklIVUFVwohlrneaG1QCUqlJWcUM5Zo4Dn5aQBVjJsBIqqFIIDolI5L1TDy0rkh-R87V06-96hD_XCeIXzuWzRdr6mRc4qCiCqiF6sUeWs9w51vXRmId2qplD_Bltvg43s6UbbTRbYbMm_JCNwtgak8vXMdq6NX_4j-gGc4oDP</recordid><startdate>20120710</startdate><enddate>20120710</enddate><creator>Macedo, Bruno</creator><creator>Millen, Thiago A</creator><creator>Braga, Carolina A. C. A</creator><creator>Gomes, Mariana P. B</creator><creator>Ferreira, Priscila S</creator><creator>Kraineva, Julia</creator><creator>Winter, Roland</creator><creator>Silva, Jerson L</creator><creator>Cordeiro, Yraima</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>H94</scope></search><sort><creationdate>20120710</creationdate><title>Nonspecific Prion Protein–Nucleic Acid Interactions Lead to Different Aggregates and Cytotoxic Species</title><author>Macedo, Bruno ; Millen, Thiago A ; Braga, Carolina A. C. A ; Gomes, Mariana P. B ; Ferreira, Priscila S ; Kraineva, Julia ; Winter, Roland ; Silva, Jerson L ; Cordeiro, Yraima</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a414t-c579c4eff335ff9ec98ea8ab1774dc0736bd0464ed9e9869970eecc375cd76893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Amino Acid Sequence</topic><topic>Base Sequence</topic><topic>Cell Line, Tumor</topic><topic>Cytotoxins - chemistry</topic><topic>Cytotoxins - metabolism</topic><topic>Cytotoxins - toxicity</topic><topic>DNA - genetics</topic><topic>DNA - metabolism</topic><topic>Humans</topic><topic>Molecular Sequence Data</topic><topic>Peptide Fragments - chemistry</topic><topic>Peptide Fragments - metabolism</topic><topic>Peptide Fragments - toxicity</topic><topic>Prions - chemistry</topic><topic>Prions - metabolism</topic><topic>Prions - toxicity</topic><topic>Protein Binding</topic><topic>Protein Multimerization</topic><topic>Protein Stability</topic><topic>Protein Structure, Quaternary</topic><topic>Protein Structure, Secondary</topic><topic>Solubility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Macedo, Bruno</creatorcontrib><creatorcontrib>Millen, Thiago A</creatorcontrib><creatorcontrib>Braga, Carolina A. C. A</creatorcontrib><creatorcontrib>Gomes, Mariana P. B</creatorcontrib><creatorcontrib>Ferreira, Priscila S</creatorcontrib><creatorcontrib>Kraineva, Julia</creatorcontrib><creatorcontrib>Winter, Roland</creatorcontrib><creatorcontrib>Silva, Jerson L</creatorcontrib><creatorcontrib>Cordeiro, Yraima</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Macedo, Bruno</au><au>Millen, Thiago A</au><au>Braga, Carolina A. C. A</au><au>Gomes, Mariana P. B</au><au>Ferreira, Priscila S</au><au>Kraineva, Julia</au><au>Winter, Roland</au><au>Silva, Jerson L</au><au>Cordeiro, Yraima</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonspecific Prion Protein–Nucleic Acid Interactions Lead to Different Aggregates and Cytotoxic Species</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2012-07-10</date><risdate>2012</risdate><volume>51</volume><issue>27</issue><spage>5402</spage><epage>5413</epage><pages>5402-5413</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>A misfolded form of the prion protein (PrP) is the primary culprit in mammalian prion diseases. It has been shown that nucleic acids catalyze the misfolding of cellular PrP into a scrapie-like conformer. It has also been observed that the interaction of PrP with nucleic acids is nonspecific and that the complex can be toxic to cultured cells. No direct correlation has yet been drawn between changes in PrP structure and toxicity due to nucleic acid binding. Here we asked whether different aggregation, stability, and toxicity effects are detected when nonrelated DNA sequences interact with recombinant PrP. Using spectroscopic techniques to analyze PrP tertiary and secondary structure and cellular assays to assess toxicity, we found that rPrP–DNA interactions lead to different aggregated species, depending on the sequence and size of the oligonucleotide tested. A 21-mer DNA sequence (D67) induced higher levels of aggregation and also dissimilar structural changes in rPrP, compared to binding to oligonucleotides with the same length and different nucleotide sequences or different GC contents. The rPrP–D67 complex induced significant cell dysfunction, which appears to be correlated with the biophysical properties of the complex. Although sequence specificity is not apparent for PrP–nucleic acid interactions, we believe that particular nucleic acid patterns, possibly related to GC content, oligonucleotide length, and structure, govern PrP recognition. Understanding the structural and cellular effects observed for PrP–nucleic acid complexes may shed light on the still mysterious pathology of the prion protein.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>22691027</pmid><doi>10.1021/bi300440e</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-2960 |
ispartof | Biochemistry (Easton), 2012-07, Vol.51 (27), p.5402-5413 |
issn | 0006-2960 1520-4995 |
language | eng |
recordid | cdi_proquest_miscellaneous_1534810098 |
source | MEDLINE; ACS Publications |
subjects | Amino Acid Sequence Base Sequence Cell Line, Tumor Cytotoxins - chemistry Cytotoxins - metabolism Cytotoxins - toxicity DNA - genetics DNA - metabolism Humans Molecular Sequence Data Peptide Fragments - chemistry Peptide Fragments - metabolism Peptide Fragments - toxicity Prions - chemistry Prions - metabolism Prions - toxicity Protein Binding Protein Multimerization Protein Stability Protein Structure, Quaternary Protein Structure, Secondary Solubility |
title | Nonspecific Prion Protein–Nucleic Acid Interactions Lead to Different Aggregates and Cytotoxic Species |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T07%3A17%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonspecific%20Prion%20Protein%E2%80%93Nucleic%20Acid%20Interactions%20Lead%20to%20Different%20Aggregates%20and%20Cytotoxic%20Species&rft.jtitle=Biochemistry%20(Easton)&rft.au=Macedo,%20Bruno&rft.date=2012-07-10&rft.volume=51&rft.issue=27&rft.spage=5402&rft.epage=5413&rft.pages=5402-5413&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi300440e&rft_dat=%3Cproquest_cross%3E1534810098%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1534810098&rft_id=info:pmid/22691027&rfr_iscdi=true |