Thermochemistry and Kinetics for 2‑Butanone-1-yl Radical (CH2·C(O)CH2CH3) Reactions with O2
Thermochemistry of reactants, intermediates, transition state structures, and products along with kinetics on the association of CH2·C(O)CH2CH3 (2-butanone-1-yl) with O2 and dissociation of the peroxy adduct isomers are studied. Thermochemical properties are determined using ab initio (G3MP2B3 an...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2014-01, Vol.118 (1), p.21-37 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 37 |
---|---|
container_issue | 1 |
container_start_page | 21 |
container_title | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory |
container_volume | 118 |
creator | Sebbar, N Bozzelli, J . W Bockhorn, H |
description | Thermochemistry of reactants, intermediates, transition state structures, and products along with kinetics on the association of CH2·C(O)CH2CH3 (2-butanone-1-yl) with O2 and dissociation of the peroxy adduct isomers are studied. Thermochemical properties are determined using ab initio (G3MP2B3 and G3) composite methods along with density functional theory (B3LYP/6-311g(d,p)). Entropy and heat capacity contributions versus temperature are determined from structures, vibration frequencies, and internal rotor potentials. The CH2·C(O)CH2CH3 radical + O2 association results in a chemically activated peroxy radical with 27 kcal mol–1 excess of energy. The chemically activated adduct can react to stabilized peroxy or hydroperoxide alkyl radical adducts, further react to lactones plus hydroxyl radical, or form olefinic ketones and a hydroperoxy radical. Kinetic parameters are determined from the G3 composite methods derived thermochemical parameters, and quantum Rice–Ramsperger–Kassel (QRRK) analysis to calculate k(E) with master equation analysis to evaluate falloff in the chemically activated and dissociation reactions. One new, not previously reported, peroxy chemistry reaction is presented. It has a low barrier path and involves a concerted reaction resulting in olefin formation, H2O elimination, and an alkoxy radical. |
doi_str_mv | 10.1021/jp408708u |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1534103138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1534103138</sourcerecordid><originalsourceid>FETCH-LOGICAL-a156t-7f7ff78d55538ee7575763d6f85e0a9779c5e1644a6548b2852e427679b1e1ec3</originalsourceid><addsrcrecordid>eNo9kE1OwzAQhS0EoqWw4ALIG6R2EfBPHDtLiIAiKlWqytpynYmaKj8lToS64wqsOAoLdhyFA3AGjFrQLOYtvjea9xA6peSCEkYvV-uQKElUt4f6VDASCEbFvtdExYGIeNxDR86tCCGUs_AQ9VjofYKQPjLzJTRlbZdQ5q5tNthUKX7IK2hz63BWN5h9vbxed62p6goCGmwKPDNpbk2Bh8mYfb4nw--3j-nI62TMR3gGxrZ5XTn8nLdLPGXH6CAzhYOT3R6gx9ubeTIOJtO7--RqEhgqojaQmcwyqVIhBFcAUviJeBplSgAxsZSxFUCjMDSRCNWCKcEgZDKS8YICBcsHaLi9u27qpw5cq30iC0VhKqg7p6ngPjWnXHn0bId2ixJSvW7y0jQb_VeLB863gLFOr-quqfznmhL9W7f-r5v_APGjbms</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1534103138</pqid></control><display><type>article</type><title>Thermochemistry and Kinetics for 2‑Butanone-1-yl Radical (CH2·C(O)CH2CH3) Reactions with O2</title><source>ACS Publications</source><creator>Sebbar, N ; Bozzelli, J . W ; Bockhorn, H</creator><creatorcontrib>Sebbar, N ; Bozzelli, J . W ; Bockhorn, H</creatorcontrib><description>Thermochemistry of reactants, intermediates, transition state structures, and products along with kinetics on the association of CH2·C(O)CH2CH3 (2-butanone-1-yl) with O2 and dissociation of the peroxy adduct isomers are studied. Thermochemical properties are determined using ab initio (G3MP2B3 and G3) composite methods along with density functional theory (B3LYP/6-311g(d,p)). Entropy and heat capacity contributions versus temperature are determined from structures, vibration frequencies, and internal rotor potentials. The CH2·C(O)CH2CH3 radical + O2 association results in a chemically activated peroxy radical with 27 kcal mol–1 excess of energy. The chemically activated adduct can react to stabilized peroxy or hydroperoxide alkyl radical adducts, further react to lactones plus hydroxyl radical, or form olefinic ketones and a hydroperoxy radical. Kinetic parameters are determined from the G3 composite methods derived thermochemical parameters, and quantum Rice–Ramsperger–Kassel (QRRK) analysis to calculate k(E) with master equation analysis to evaluate falloff in the chemically activated and dissociation reactions. One new, not previously reported, peroxy chemistry reaction is presented. It has a low barrier path and involves a concerted reaction resulting in olefin formation, H2O elimination, and an alkoxy radical.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/jp408708u</identifier><identifier>PMID: 24102500</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2014-01, Vol.118 (1), p.21-37</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp408708u$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp408708u$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24102500$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sebbar, N</creatorcontrib><creatorcontrib>Bozzelli, J . W</creatorcontrib><creatorcontrib>Bockhorn, H</creatorcontrib><title>Thermochemistry and Kinetics for 2‑Butanone-1-yl Radical (CH2·C(O)CH2CH3) Reactions with O2</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>Thermochemistry of reactants, intermediates, transition state structures, and products along with kinetics on the association of CH2·C(O)CH2CH3 (2-butanone-1-yl) with O2 and dissociation of the peroxy adduct isomers are studied. Thermochemical properties are determined using ab initio (G3MP2B3 and G3) composite methods along with density functional theory (B3LYP/6-311g(d,p)). Entropy and heat capacity contributions versus temperature are determined from structures, vibration frequencies, and internal rotor potentials. The CH2·C(O)CH2CH3 radical + O2 association results in a chemically activated peroxy radical with 27 kcal mol–1 excess of energy. The chemically activated adduct can react to stabilized peroxy or hydroperoxide alkyl radical adducts, further react to lactones plus hydroxyl radical, or form olefinic ketones and a hydroperoxy radical. Kinetic parameters are determined from the G3 composite methods derived thermochemical parameters, and quantum Rice–Ramsperger–Kassel (QRRK) analysis to calculate k(E) with master equation analysis to evaluate falloff in the chemically activated and dissociation reactions. One new, not previously reported, peroxy chemistry reaction is presented. It has a low barrier path and involves a concerted reaction resulting in olefin formation, H2O elimination, and an alkoxy radical.</description><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kE1OwzAQhS0EoqWw4ALIG6R2EfBPHDtLiIAiKlWqytpynYmaKj8lToS64wqsOAoLdhyFA3AGjFrQLOYtvjea9xA6peSCEkYvV-uQKElUt4f6VDASCEbFvtdExYGIeNxDR86tCCGUs_AQ9VjofYKQPjLzJTRlbZdQ5q5tNthUKX7IK2hz63BWN5h9vbxed62p6goCGmwKPDNpbk2Bh8mYfb4nw--3j-nI62TMR3gGxrZ5XTn8nLdLPGXH6CAzhYOT3R6gx9ubeTIOJtO7--RqEhgqojaQmcwyqVIhBFcAUviJeBplSgAxsZSxFUCjMDSRCNWCKcEgZDKS8YICBcsHaLi9u27qpw5cq30iC0VhKqg7p6ngPjWnXHn0bId2ixJSvW7y0jQb_VeLB863gLFOr-quqfznmhL9W7f-r5v_APGjbms</recordid><startdate>20140109</startdate><enddate>20140109</enddate><creator>Sebbar, N</creator><creator>Bozzelli, J . W</creator><creator>Bockhorn, H</creator><general>American Chemical Society</general><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20140109</creationdate><title>Thermochemistry and Kinetics for 2‑Butanone-1-yl Radical (CH2·C(O)CH2CH3) Reactions with O2</title><author>Sebbar, N ; Bozzelli, J . W ; Bockhorn, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a156t-7f7ff78d55538ee7575763d6f85e0a9779c5e1644a6548b2852e427679b1e1ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sebbar, N</creatorcontrib><creatorcontrib>Bozzelli, J . W</creatorcontrib><creatorcontrib>Bockhorn, H</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sebbar, N</au><au>Bozzelli, J . W</au><au>Bockhorn, H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermochemistry and Kinetics for 2‑Butanone-1-yl Radical (CH2·C(O)CH2CH3) Reactions with O2</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2014-01-09</date><risdate>2014</risdate><volume>118</volume><issue>1</issue><spage>21</spage><epage>37</epage><pages>21-37</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>Thermochemistry of reactants, intermediates, transition state structures, and products along with kinetics on the association of CH2·C(O)CH2CH3 (2-butanone-1-yl) with O2 and dissociation of the peroxy adduct isomers are studied. Thermochemical properties are determined using ab initio (G3MP2B3 and G3) composite methods along with density functional theory (B3LYP/6-311g(d,p)). Entropy and heat capacity contributions versus temperature are determined from structures, vibration frequencies, and internal rotor potentials. The CH2·C(O)CH2CH3 radical + O2 association results in a chemically activated peroxy radical with 27 kcal mol–1 excess of energy. The chemically activated adduct can react to stabilized peroxy or hydroperoxide alkyl radical adducts, further react to lactones plus hydroxyl radical, or form olefinic ketones and a hydroperoxy radical. Kinetic parameters are determined from the G3 composite methods derived thermochemical parameters, and quantum Rice–Ramsperger–Kassel (QRRK) analysis to calculate k(E) with master equation analysis to evaluate falloff in the chemically activated and dissociation reactions. One new, not previously reported, peroxy chemistry reaction is presented. It has a low barrier path and involves a concerted reaction resulting in olefin formation, H2O elimination, and an alkoxy radical.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24102500</pmid><doi>10.1021/jp408708u</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1089-5639 |
ispartof | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2014-01, Vol.118 (1), p.21-37 |
issn | 1089-5639 1520-5215 |
language | eng |
recordid | cdi_proquest_miscellaneous_1534103138 |
source | ACS Publications |
title | Thermochemistry and Kinetics for 2‑Butanone-1-yl Radical (CH2·C(O)CH2CH3) Reactions with O2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T06%3A50%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermochemistry%20and%20Kinetics%20for%202%E2%80%91Butanone-1-yl%20Radical%20(CH2%C2%B7C(%EE%97%BBO)CH2CH3)%20Reactions%20with%20O2&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Sebbar,%20N&rft.date=2014-01-09&rft.volume=118&rft.issue=1&rft.spage=21&rft.epage=37&rft.pages=21-37&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/jp408708u&rft_dat=%3Cproquest_pubme%3E1534103138%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1534103138&rft_id=info:pmid/24102500&rfr_iscdi=true |