Thermochemistry and Kinetics for 2‑Butanone-1-yl Radical (CH2·C(O)CH2CH3) Reactions with O2

Thermochemistry of reactants, intermediates, transition state structures, and products along with kinetics on the association of CH2·C­(O)­CH2CH3 (2-butanone-1-yl) with O2 and dissociation of the peroxy adduct isomers are studied. Thermochemical properties are determined using ab initio (G3MP2B3 an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2014-01, Vol.118 (1), p.21-37
Hauptverfasser: Sebbar, N, Bozzelli, J . W, Bockhorn, H
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 37
container_issue 1
container_start_page 21
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 118
creator Sebbar, N
Bozzelli, J . W
Bockhorn, H
description Thermochemistry of reactants, intermediates, transition state structures, and products along with kinetics on the association of CH2·C­(O)­CH2CH3 (2-butanone-1-yl) with O2 and dissociation of the peroxy adduct isomers are studied. Thermochemical properties are determined using ab initio (G3MP2B3 and G3) composite methods along with density functional theory (B3LYP/6-311g­(d,p)). Entropy and heat capacity contributions versus temperature are determined from structures, vibration frequencies, and internal rotor potentials. The CH2·C­(O)­CH2CH3 radical + O2 association results in a chemically activated peroxy radical with 27 kcal mol–1 excess of energy. The chemically activated adduct can react to stabilized peroxy or hydroperoxide alkyl radical adducts, further react to lactones plus hydroxyl radical, or form olefinic ketones and a hydroperoxy radical. Kinetic parameters are determined from the G3 composite methods derived thermochemical parameters, and quantum Rice–Ramsperger–Kassel (QRRK) analysis to calculate k(E) with master equation analysis to evaluate falloff in the chemically activated and dissociation reactions. One new, not previously reported, peroxy chemistry reaction is presented. It has a low barrier path and involves a concerted reaction resulting in olefin formation, H2O elimination, and an alkoxy radical.
doi_str_mv 10.1021/jp408708u
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1534103138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1534103138</sourcerecordid><originalsourceid>FETCH-LOGICAL-a156t-7f7ff78d55538ee7575763d6f85e0a9779c5e1644a6548b2852e427679b1e1ec3</originalsourceid><addsrcrecordid>eNo9kE1OwzAQhS0EoqWw4ALIG6R2EfBPHDtLiIAiKlWqytpynYmaKj8lToS64wqsOAoLdhyFA3AGjFrQLOYtvjea9xA6peSCEkYvV-uQKElUt4f6VDASCEbFvtdExYGIeNxDR86tCCGUs_AQ9VjofYKQPjLzJTRlbZdQ5q5tNthUKX7IK2hz63BWN5h9vbxed62p6goCGmwKPDNpbk2Bh8mYfb4nw--3j-nI62TMR3gGxrZ5XTn8nLdLPGXH6CAzhYOT3R6gx9ubeTIOJtO7--RqEhgqojaQmcwyqVIhBFcAUviJeBplSgAxsZSxFUCjMDSRCNWCKcEgZDKS8YICBcsHaLi9u27qpw5cq30iC0VhKqg7p6ngPjWnXHn0bId2ixJSvW7y0jQb_VeLB863gLFOr-quqfznmhL9W7f-r5v_APGjbms</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1534103138</pqid></control><display><type>article</type><title>Thermochemistry and Kinetics for 2‑Butanone-1-yl Radical (CH2·C(O)CH2CH3) Reactions with O2</title><source>ACS Publications</source><creator>Sebbar, N ; Bozzelli, J . W ; Bockhorn, H</creator><creatorcontrib>Sebbar, N ; Bozzelli, J . W ; Bockhorn, H</creatorcontrib><description>Thermochemistry of reactants, intermediates, transition state structures, and products along with kinetics on the association of CH2·C­(O)­CH2CH3 (2-butanone-1-yl) with O2 and dissociation of the peroxy adduct isomers are studied. Thermochemical properties are determined using ab initio (G3MP2B3 and G3) composite methods along with density functional theory (B3LYP/6-311g­(d,p)). Entropy and heat capacity contributions versus temperature are determined from structures, vibration frequencies, and internal rotor potentials. The CH2·C­(O)­CH2CH3 radical + O2 association results in a chemically activated peroxy radical with 27 kcal mol–1 excess of energy. The chemically activated adduct can react to stabilized peroxy or hydroperoxide alkyl radical adducts, further react to lactones plus hydroxyl radical, or form olefinic ketones and a hydroperoxy radical. Kinetic parameters are determined from the G3 composite methods derived thermochemical parameters, and quantum Rice–Ramsperger–Kassel (QRRK) analysis to calculate k(E) with master equation analysis to evaluate falloff in the chemically activated and dissociation reactions. One new, not previously reported, peroxy chemistry reaction is presented. It has a low barrier path and involves a concerted reaction resulting in olefin formation, H2O elimination, and an alkoxy radical.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/jp408708u</identifier><identifier>PMID: 24102500</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2014-01, Vol.118 (1), p.21-37</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp408708u$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp408708u$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24102500$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sebbar, N</creatorcontrib><creatorcontrib>Bozzelli, J . W</creatorcontrib><creatorcontrib>Bockhorn, H</creatorcontrib><title>Thermochemistry and Kinetics for 2‑Butanone-1-yl Radical (CH2·C(O)CH2CH3) Reactions with O2</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>Thermochemistry of reactants, intermediates, transition state structures, and products along with kinetics on the association of CH2·C­(O)­CH2CH3 (2-butanone-1-yl) with O2 and dissociation of the peroxy adduct isomers are studied. Thermochemical properties are determined using ab initio (G3MP2B3 and G3) composite methods along with density functional theory (B3LYP/6-311g­(d,p)). Entropy and heat capacity contributions versus temperature are determined from structures, vibration frequencies, and internal rotor potentials. The CH2·C­(O)­CH2CH3 radical + O2 association results in a chemically activated peroxy radical with 27 kcal mol–1 excess of energy. The chemically activated adduct can react to stabilized peroxy or hydroperoxide alkyl radical adducts, further react to lactones plus hydroxyl radical, or form olefinic ketones and a hydroperoxy radical. Kinetic parameters are determined from the G3 composite methods derived thermochemical parameters, and quantum Rice–Ramsperger–Kassel (QRRK) analysis to calculate k(E) with master equation analysis to evaluate falloff in the chemically activated and dissociation reactions. One new, not previously reported, peroxy chemistry reaction is presented. It has a low barrier path and involves a concerted reaction resulting in olefin formation, H2O elimination, and an alkoxy radical.</description><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kE1OwzAQhS0EoqWw4ALIG6R2EfBPHDtLiIAiKlWqytpynYmaKj8lToS64wqsOAoLdhyFA3AGjFrQLOYtvjea9xA6peSCEkYvV-uQKElUt4f6VDASCEbFvtdExYGIeNxDR86tCCGUs_AQ9VjofYKQPjLzJTRlbZdQ5q5tNthUKX7IK2hz63BWN5h9vbxed62p6goCGmwKPDNpbk2Bh8mYfb4nw--3j-nI62TMR3gGxrZ5XTn8nLdLPGXH6CAzhYOT3R6gx9ubeTIOJtO7--RqEhgqojaQmcwyqVIhBFcAUviJeBplSgAxsZSxFUCjMDSRCNWCKcEgZDKS8YICBcsHaLi9u27qpw5cq30iC0VhKqg7p6ngPjWnXHn0bId2ixJSvW7y0jQb_VeLB863gLFOr-quqfznmhL9W7f-r5v_APGjbms</recordid><startdate>20140109</startdate><enddate>20140109</enddate><creator>Sebbar, N</creator><creator>Bozzelli, J . W</creator><creator>Bockhorn, H</creator><general>American Chemical Society</general><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20140109</creationdate><title>Thermochemistry and Kinetics for 2‑Butanone-1-yl Radical (CH2·C(O)CH2CH3) Reactions with O2</title><author>Sebbar, N ; Bozzelli, J . W ; Bockhorn, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a156t-7f7ff78d55538ee7575763d6f85e0a9779c5e1644a6548b2852e427679b1e1ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sebbar, N</creatorcontrib><creatorcontrib>Bozzelli, J . W</creatorcontrib><creatorcontrib>Bockhorn, H</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sebbar, N</au><au>Bozzelli, J . W</au><au>Bockhorn, H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermochemistry and Kinetics for 2‑Butanone-1-yl Radical (CH2·C(O)CH2CH3) Reactions with O2</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2014-01-09</date><risdate>2014</risdate><volume>118</volume><issue>1</issue><spage>21</spage><epage>37</epage><pages>21-37</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>Thermochemistry of reactants, intermediates, transition state structures, and products along with kinetics on the association of CH2·C­(O)­CH2CH3 (2-butanone-1-yl) with O2 and dissociation of the peroxy adduct isomers are studied. Thermochemical properties are determined using ab initio (G3MP2B3 and G3) composite methods along with density functional theory (B3LYP/6-311g­(d,p)). Entropy and heat capacity contributions versus temperature are determined from structures, vibration frequencies, and internal rotor potentials. The CH2·C­(O)­CH2CH3 radical + O2 association results in a chemically activated peroxy radical with 27 kcal mol–1 excess of energy. The chemically activated adduct can react to stabilized peroxy or hydroperoxide alkyl radical adducts, further react to lactones plus hydroxyl radical, or form olefinic ketones and a hydroperoxy radical. Kinetic parameters are determined from the G3 composite methods derived thermochemical parameters, and quantum Rice–Ramsperger–Kassel (QRRK) analysis to calculate k(E) with master equation analysis to evaluate falloff in the chemically activated and dissociation reactions. One new, not previously reported, peroxy chemistry reaction is presented. It has a low barrier path and involves a concerted reaction resulting in olefin formation, H2O elimination, and an alkoxy radical.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24102500</pmid><doi>10.1021/jp408708u</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2014-01, Vol.118 (1), p.21-37
issn 1089-5639
1520-5215
language eng
recordid cdi_proquest_miscellaneous_1534103138
source ACS Publications
title Thermochemistry and Kinetics for 2‑Butanone-1-yl Radical (CH2·C(O)CH2CH3) Reactions with O2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T06%3A50%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermochemistry%20and%20Kinetics%20for%202%E2%80%91Butanone-1-yl%20Radical%20(CH2%C2%B7C(%EE%97%BBO)CH2CH3)%20Reactions%20with%20O2&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Sebbar,%20N&rft.date=2014-01-09&rft.volume=118&rft.issue=1&rft.spage=21&rft.epage=37&rft.pages=21-37&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/jp408708u&rft_dat=%3Cproquest_pubme%3E1534103138%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1534103138&rft_id=info:pmid/24102500&rfr_iscdi=true