Associative search network: A reinforcement learning associative memory
An associative memory system is presented which does not require a "teacher" to provide the desired associations. For each input key it conducts a search for the output pattern which optimizes an external payoff or reinforcement signal. The associative search network (ASN) combines pattern...
Gespeichert in:
Veröffentlicht in: | Biological cybernetics 1981-05, Vol.40 (3), p.201-211 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 211 |
---|---|
container_issue | 3 |
container_start_page | 201 |
container_title | Biological cybernetics |
container_volume | 40 |
creator | Barto, Andrew G. Sutton, Richard S. Brouwer, Peter S. |
description | An associative memory system is presented which does not require a "teacher" to provide the desired associations. For each input key it conducts a search for the output pattern which optimizes an external payoff or reinforcement signal. The associative search network (ASN) combines pattern recognition and function optimization capabilities in a simple and effective way. The authors define the associative search problem, discuss conditions under which the associative search network is capable of solving it, and present results from computer simulations. The synthesis of sensory-motor control surfaces is discussed as an example of the associative search problem. |
doi_str_mv | 10.1007/BF00453370 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_15339716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>15339716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-bb76074637557f07713be5032c91edcbc6d545ea7f4ab3f41b162a7aa979e063</originalsourceid><addsrcrecordid>eNpNUDtPwzAYtBBIhMLCL_DEgBT4HL9ktlLRglSJpbvluF8gkNjFTkH9901VJJhuuIfujpBrBncMQN8_zgGE5FzDCSmY4FUJWsMpKYALKFkFcE4ucv4AAFNJU5DFNOfoWze030gzuuTfacDhJ6bPBzqlCdvQxOSxxzDQbuRDG96o-2fqsY9pd0nOGtdlvPrFCVnNn1az53L5uniZTZel55UayrrWCrRQXEupm7Eb4zVK4JU3DNe-9mothUSnG-Fq3ghWM1U57ZzRBkHxCbk5xm5S_NpiHmzfZo9d5wLGbbZs3G40Owhvj0KfYs4JG7tJbe_SzjKwh6vs31V8D_NVW3c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15339716</pqid></control><display><type>article</type><title>Associative search network: A reinforcement learning associative memory</title><source>SpringerLink Journals - AutoHoldings</source><creator>Barto, Andrew G. ; Sutton, Richard S. ; Brouwer, Peter S.</creator><creatorcontrib>Barto, Andrew G. ; Sutton, Richard S. ; Brouwer, Peter S.</creatorcontrib><description>An associative memory system is presented which does not require a "teacher" to provide the desired associations. For each input key it conducts a search for the output pattern which optimizes an external payoff or reinforcement signal. The associative search network (ASN) combines pattern recognition and function optimization capabilities in a simple and effective way. The authors define the associative search problem, discuss conditions under which the associative search network is capable of solving it, and present results from computer simulations. The synthesis of sensory-motor control surfaces is discussed as an example of the associative search problem.</description><identifier>ISSN: 0340-1200</identifier><identifier>EISSN: 1432-0770</identifier><identifier>DOI: 10.1007/BF00453370</identifier><language>eng</language><ispartof>Biological cybernetics, 1981-05, Vol.40 (3), p.201-211</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-bb76074637557f07713be5032c91edcbc6d545ea7f4ab3f41b162a7aa979e063</citedby><cites>FETCH-LOGICAL-c326t-bb76074637557f07713be5032c91edcbc6d545ea7f4ab3f41b162a7aa979e063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Barto, Andrew G.</creatorcontrib><creatorcontrib>Sutton, Richard S.</creatorcontrib><creatorcontrib>Brouwer, Peter S.</creatorcontrib><title>Associative search network: A reinforcement learning associative memory</title><title>Biological cybernetics</title><description>An associative memory system is presented which does not require a "teacher" to provide the desired associations. For each input key it conducts a search for the output pattern which optimizes an external payoff or reinforcement signal. The associative search network (ASN) combines pattern recognition and function optimization capabilities in a simple and effective way. The authors define the associative search problem, discuss conditions under which the associative search network is capable of solving it, and present results from computer simulations. The synthesis of sensory-motor control surfaces is discussed as an example of the associative search problem.</description><issn>0340-1200</issn><issn>1432-0770</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1981</creationdate><recordtype>article</recordtype><recordid>eNpNUDtPwzAYtBBIhMLCL_DEgBT4HL9ktlLRglSJpbvluF8gkNjFTkH9901VJJhuuIfujpBrBncMQN8_zgGE5FzDCSmY4FUJWsMpKYALKFkFcE4ucv4AAFNJU5DFNOfoWze030gzuuTfacDhJ6bPBzqlCdvQxOSxxzDQbuRDG96o-2fqsY9pd0nOGtdlvPrFCVnNn1az53L5uniZTZel55UayrrWCrRQXEupm7Eb4zVK4JU3DNe-9mothUSnG-Fq3ghWM1U57ZzRBkHxCbk5xm5S_NpiHmzfZo9d5wLGbbZs3G40Owhvj0KfYs4JG7tJbe_SzjKwh6vs31V8D_NVW3c</recordid><startdate>19810501</startdate><enddate>19810501</enddate><creator>Barto, Andrew G.</creator><creator>Sutton, Richard S.</creator><creator>Brouwer, Peter S.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope></search><sort><creationdate>19810501</creationdate><title>Associative search network: A reinforcement learning associative memory</title><author>Barto, Andrew G. ; Sutton, Richard S. ; Brouwer, Peter S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-bb76074637557f07713be5032c91edcbc6d545ea7f4ab3f41b162a7aa979e063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1981</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barto, Andrew G.</creatorcontrib><creatorcontrib>Sutton, Richard S.</creatorcontrib><creatorcontrib>Brouwer, Peter S.</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><jtitle>Biological cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barto, Andrew G.</au><au>Sutton, Richard S.</au><au>Brouwer, Peter S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Associative search network: A reinforcement learning associative memory</atitle><jtitle>Biological cybernetics</jtitle><date>1981-05-01</date><risdate>1981</risdate><volume>40</volume><issue>3</issue><spage>201</spage><epage>211</epage><pages>201-211</pages><issn>0340-1200</issn><eissn>1432-0770</eissn><abstract>An associative memory system is presented which does not require a "teacher" to provide the desired associations. For each input key it conducts a search for the output pattern which optimizes an external payoff or reinforcement signal. The associative search network (ASN) combines pattern recognition and function optimization capabilities in a simple and effective way. The authors define the associative search problem, discuss conditions under which the associative search network is capable of solving it, and present results from computer simulations. The synthesis of sensory-motor control surfaces is discussed as an example of the associative search problem.</abstract><doi>10.1007/BF00453370</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0340-1200 |
ispartof | Biological cybernetics, 1981-05, Vol.40 (3), p.201-211 |
issn | 0340-1200 1432-0770 |
language | eng |
recordid | cdi_proquest_miscellaneous_15339716 |
source | SpringerLink Journals - AutoHoldings |
title | Associative search network: A reinforcement learning associative memory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T00%3A08%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Associative%20search%20network:%20A%20reinforcement%20learning%20associative%20memory&rft.jtitle=Biological%20cybernetics&rft.au=Barto,%20Andrew%20G.&rft.date=1981-05-01&rft.volume=40&rft.issue=3&rft.spage=201&rft.epage=211&rft.pages=201-211&rft.issn=0340-1200&rft.eissn=1432-0770&rft_id=info:doi/10.1007/BF00453370&rft_dat=%3Cproquest_cross%3E15339716%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15339716&rft_id=info:pmid/&rfr_iscdi=true |