Application of linear prediction singular value decomposition for processing in vivo NMR data with low signal-to-noise ratio

Nuclear Magnetic Resonance (NMR) spectroscopy has become a powerful method to study cell metabolism in vivo. Low sensitivity of nuclear magnetic resonance (NMR) measurements of living cell composition by conventional methods requires samples with high cell density compared to that in growing culture...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology techniques 1989, Vol.3 (1), p.13-18
Hauptverfasser: GALAZZO, J. L, BAILEY, J. E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18
container_issue 1
container_start_page 13
container_title Biotechnology techniques
container_volume 3
creator GALAZZO, J. L
BAILEY, J. E
description Nuclear Magnetic Resonance (NMR) spectroscopy has become a powerful method to study cell metabolism in vivo. Low sensitivity of nuclear magnetic resonance (NMR) measurements of living cell composition by conventional methods requires samples with high cell density compared to that in growing cultures. Reasonably accurate intracellular concentration estimates from lower cell density samples can be obtained by treating the time-domain NMR data by linear prediction singular value decomposition (LPSVD) prior to Fourier transformation. Alternatively, application of LPSVD enables intracellular concentrations estimates in less NMR acquisition time, improving time resolution in NMR measurements of intracellular transients.
doi_str_mv 10.1007/BF01876214
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_15327856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>15327856</sourcerecordid><originalsourceid>FETCH-LOGICAL-p130t-226608db27a5ddcdb85541421079f654df578642453b120ff8d9ead5e1535ba43</originalsourceid><addsrcrecordid>eNotkE1LAzEYhIMoWKsXf0EO4m01yeZrj1WsClVBFLwt2XzUSJqsm90WwR_vtvb0wrwPM8MAcI7RFUZIXN_MEZaCE0wPwAQzURZcSHoIJqhiuCBIfhyDk5y_EEIlQnQCfmdtG7xWvU8RJgeDj1Z1sO2s8XonZh-XQxi1tQqDhcbqtGpT9runS1s2aZu3GPQRrv06weenV2hUr-DG958wpM3osowqFH0qYvLZwm6beAqOnArZnu3vFLzP795uH4rFy_3j7WxRtLhEfUEI50iahgjFjNGmkYxRTAlGonKcUeOYkJwSysoGE-ScNJVVhlnMStYoWk7B5b_vWPV7sLmvVz5rG4KKNg25HjkiJOMjeLEHVdYquE5F7XPddn6lup-as0rScdQ_U8tuhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15327856</pqid></control><display><type>article</type><title>Application of linear prediction singular value decomposition for processing in vivo NMR data with low signal-to-noise ratio</title><source>SpringerLink Journals - AutoHoldings</source><creator>GALAZZO, J. L ; BAILEY, J. E</creator><creatorcontrib>GALAZZO, J. L ; BAILEY, J. E</creatorcontrib><description>Nuclear Magnetic Resonance (NMR) spectroscopy has become a powerful method to study cell metabolism in vivo. Low sensitivity of nuclear magnetic resonance (NMR) measurements of living cell composition by conventional methods requires samples with high cell density compared to that in growing cultures. Reasonably accurate intracellular concentration estimates from lower cell density samples can be obtained by treating the time-domain NMR data by linear prediction singular value decomposition (LPSVD) prior to Fourier transformation. Alternatively, application of LPSVD enables intracellular concentrations estimates in less NMR acquisition time, improving time resolution in NMR measurements of intracellular transients.</description><identifier>ISSN: 0951-208X</identifier><identifier>EISSN: 1573-6784</identifier><identifier>DOI: 10.1007/BF01876214</identifier><identifier>CODEN: BTECE6</identifier><language>eng</language><publisher>London: Chapman and Hall</publisher><subject>Biological and medical sciences ; Biotechnology ; cell density ; Fourier analysis ; Fundamental and applied biological sciences. Psychology ; Methods. Procedures. Technologies ; Others ; Various methods and equipments</subject><ispartof>Biotechnology techniques, 1989, Vol.3 (1), p.13-18</ispartof><rights>1990 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=6598457$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>GALAZZO, J. L</creatorcontrib><creatorcontrib>BAILEY, J. E</creatorcontrib><title>Application of linear prediction singular value decomposition for processing in vivo NMR data with low signal-to-noise ratio</title><title>Biotechnology techniques</title><description>Nuclear Magnetic Resonance (NMR) spectroscopy has become a powerful method to study cell metabolism in vivo. Low sensitivity of nuclear magnetic resonance (NMR) measurements of living cell composition by conventional methods requires samples with high cell density compared to that in growing cultures. Reasonably accurate intracellular concentration estimates from lower cell density samples can be obtained by treating the time-domain NMR data by linear prediction singular value decomposition (LPSVD) prior to Fourier transformation. Alternatively, application of LPSVD enables intracellular concentrations estimates in less NMR acquisition time, improving time resolution in NMR measurements of intracellular transients.</description><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>cell density</subject><subject>Fourier analysis</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Methods. Procedures. Technologies</subject><subject>Others</subject><subject>Various methods and equipments</subject><issn>0951-208X</issn><issn>1573-6784</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEYhIMoWKsXf0EO4m01yeZrj1WsClVBFLwt2XzUSJqsm90WwR_vtvb0wrwPM8MAcI7RFUZIXN_MEZaCE0wPwAQzURZcSHoIJqhiuCBIfhyDk5y_EEIlQnQCfmdtG7xWvU8RJgeDj1Z1sO2s8XonZh-XQxi1tQqDhcbqtGpT9runS1s2aZu3GPQRrv06weenV2hUr-DG958wpM3osowqFH0qYvLZwm6beAqOnArZnu3vFLzP795uH4rFy_3j7WxRtLhEfUEI50iahgjFjNGmkYxRTAlGonKcUeOYkJwSysoGE-ScNJVVhlnMStYoWk7B5b_vWPV7sLmvVz5rG4KKNg25HjkiJOMjeLEHVdYquE5F7XPddn6lup-as0rScdQ_U8tuhA</recordid><startdate>1989</startdate><enddate>1989</enddate><creator>GALAZZO, J. L</creator><creator>BAILEY, J. E</creator><general>Chapman and Hall</general><scope>IQODW</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>1989</creationdate><title>Application of linear prediction singular value decomposition for processing in vivo NMR data with low signal-to-noise ratio</title><author>GALAZZO, J. L ; BAILEY, J. E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p130t-226608db27a5ddcdb85541421079f654df578642453b120ff8d9ead5e1535ba43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>cell density</topic><topic>Fourier analysis</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Methods. Procedures. Technologies</topic><topic>Others</topic><topic>Various methods and equipments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GALAZZO, J. L</creatorcontrib><creatorcontrib>BAILEY, J. E</creatorcontrib><collection>Pascal-Francis</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biotechnology techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GALAZZO, J. L</au><au>BAILEY, J. E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of linear prediction singular value decomposition for processing in vivo NMR data with low signal-to-noise ratio</atitle><jtitle>Biotechnology techniques</jtitle><date>1989</date><risdate>1989</risdate><volume>3</volume><issue>1</issue><spage>13</spage><epage>18</epage><pages>13-18</pages><issn>0951-208X</issn><eissn>1573-6784</eissn><coden>BTECE6</coden><abstract>Nuclear Magnetic Resonance (NMR) spectroscopy has become a powerful method to study cell metabolism in vivo. Low sensitivity of nuclear magnetic resonance (NMR) measurements of living cell composition by conventional methods requires samples with high cell density compared to that in growing cultures. Reasonably accurate intracellular concentration estimates from lower cell density samples can be obtained by treating the time-domain NMR data by linear prediction singular value decomposition (LPSVD) prior to Fourier transformation. Alternatively, application of LPSVD enables intracellular concentrations estimates in less NMR acquisition time, improving time resolution in NMR measurements of intracellular transients.</abstract><cop>London</cop><pub>Chapman and Hall</pub><doi>10.1007/BF01876214</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0951-208X
ispartof Biotechnology techniques, 1989, Vol.3 (1), p.13-18
issn 0951-208X
1573-6784
language eng
recordid cdi_proquest_miscellaneous_15327856
source SpringerLink Journals - AutoHoldings
subjects Biological and medical sciences
Biotechnology
cell density
Fourier analysis
Fundamental and applied biological sciences. Psychology
Methods. Procedures. Technologies
Others
Various methods and equipments
title Application of linear prediction singular value decomposition for processing in vivo NMR data with low signal-to-noise ratio
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A52%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20linear%20prediction%20singular%20value%20decomposition%20for%20processing%20in%20vivo%20NMR%20data%20with%20low%20signal-to-noise%20ratio&rft.jtitle=Biotechnology%20techniques&rft.au=GALAZZO,%20J.%20L&rft.date=1989&rft.volume=3&rft.issue=1&rft.spage=13&rft.epage=18&rft.pages=13-18&rft.issn=0951-208X&rft.eissn=1573-6784&rft.coden=BTECE6&rft_id=info:doi/10.1007/BF01876214&rft_dat=%3Cproquest_pasca%3E15327856%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15327856&rft_id=info:pmid/&rfr_iscdi=true