All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins

New protein parameters are reported for the all-atom empirical energy function in the CHARMM program. The parameter evaluation was based on a self-consistent approach designed to achieve a balance between the internal (bonding) and interaction (nonbonding) terms of the force field and among the solv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 1998-04, Vol.102 (18), p.3586-3616
Hauptverfasser: MacKerell, A. D, Bashford, D, Bellott, M, Dunbrack, R. L, Evanseck, J. D, Field, M. J, Fischer, S, Gao, J, Guo, H, Ha, S, Joseph-McCarthy, D, Kuchnir, L, Kuczera, K, Lau, F. T. K, Mattos, C, Michnick, S, Ngo, T, Nguyen, D. T, Prodhom, B, Reiher, W. E, Roux, B, Schlenkrich, M, Smith, J. C, Stote, R, Straub, J, Watanabe, M, Wiórkiewicz-Kuczera, J, Yin, D, Karplus, M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3616
container_issue 18
container_start_page 3586
container_title The journal of physical chemistry. B
container_volume 102
creator MacKerell, A. D
Bashford, D
Bellott, M
Dunbrack, R. L
Evanseck, J. D
Field, M. J
Fischer, S
Gao, J
Guo, H
Ha, S
Joseph-McCarthy, D
Kuchnir, L
Kuczera, K
Lau, F. T. K
Mattos, C
Michnick, S
Ngo, T
Nguyen, D. T
Prodhom, B
Reiher, W. E
Roux, B
Schlenkrich, M
Smith, J. C
Stote, R
Straub, J
Watanabe, M
Wiórkiewicz-Kuczera, J
Yin, D
Karplus, M
description New protein parameters are reported for the all-atom empirical energy function in the CHARMM program. The parameter evaluation was based on a self-consistent approach designed to achieve a balance between the internal (bonding) and interaction (nonbonding) terms of the force field and among the solvent−solvent, solvent−solute, and solute−solute interactions. Optimization of the internal parameters used experimental gas-phase geometries, vibrational spectra, and torsional energy surfaces supplemented with ab initio results. The peptide backbone bonding parameters were optimized with respect to data for N-methylacetamide and the alanine dipeptide. The interaction parameters, particularly the atomic charges, were determined by fitting ab initio interaction energies and geometries of complexes between water and model compounds that represented the backbone and the various side chains. In addition, dipole moments, experimental heats and free energies of vaporization, solvation and sublimation, molecular volumes, and crystal pressures and structures were used in the optimization. The resulting protein parameters were tested by applying them to noncyclic tripeptide crystals, cyclic peptide crystals, and the proteins crambin, bovine pancreatic trypsin inhibitor, and carbonmonoxy myoglobin in vacuo and in crystals. A detailed analysis of the relationship between the alanine dipeptide potential energy surface and calculated protein φ, χ angles was made and used in optimizing the peptide group torsional parameters. The results demonstrate that use of ab initio structural and energetic data by themselves are not sufficient to obtain an adequate backbone representation for peptides and proteins in solution and in crystals. Extensive comparisons between molecular dynamics simulations and experimental data for polypeptides and proteins were performed for both structural and dynamic properties. Energy minimization and dynamics simulations for crystals demonstrate that the latter are needed to obtain meaningful comparisons with experimental crystal structures. The presented parameters, in combination with the previously published CHARMM all-atom parameters for nucleic acids and lipids, provide a consistent set for condensed-phase simulations of a wide variety of molecules of biological interest.
doi_str_mv 10.1021/jp973084f
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1532479477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1532479477</sourcerecordid><originalsourceid>FETCH-LOGICAL-a379t-546a589253cdf7d042fd8ec9453cba1eaf8b34b376777256d5136f672f861b593</originalsourceid><addsrcrecordid>eNptkEtLAzEUhYMotlYX_gGZjaCL0byTWZZaH1CxYF0PmUkiKZlJTWYW_fdOae3KxeUeLt89cA4A1wg-IIjR43pTCAIltSdgjBiG-TDi9KA5gnwELlJaQ4gZlvwcjDCVspAQjsFq6n0-7UKTzZuNi65WPluGzrSdG5QNMXsP3tS9VzuljXftd6ZanT1tW9W4OmWfXa-dSVmw2TIOn65Nl-DMKp_M1WFPwNfzfDV7zRcfL2-z6SJXRBRdzihXTBaYkVpboSHFVktTF3Q4VAoZZWVFaEUEF0JgxjVDhFsusJUcVawgE3C3993E8NOb1JWNS7XxXrUm9KlEjGAqCirEgN7v0TqGlKKx5Sa6RsVtiWC5K7E8ljiwNwfbvmqMPpJ_rQ3A7R5QdSrXoY_tkPIfo18QJnee</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1532479477</pqid></control><display><type>article</type><title>All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins</title><source>American Chemical Society Journals</source><creator>MacKerell, A. D ; Bashford, D ; Bellott, M ; Dunbrack, R. L ; Evanseck, J. D ; Field, M. J ; Fischer, S ; Gao, J ; Guo, H ; Ha, S ; Joseph-McCarthy, D ; Kuchnir, L ; Kuczera, K ; Lau, F. T. K ; Mattos, C ; Michnick, S ; Ngo, T ; Nguyen, D. T ; Prodhom, B ; Reiher, W. E ; Roux, B ; Schlenkrich, M ; Smith, J. C ; Stote, R ; Straub, J ; Watanabe, M ; Wiórkiewicz-Kuczera, J ; Yin, D ; Karplus, M</creator><creatorcontrib>MacKerell, A. D ; Bashford, D ; Bellott, M ; Dunbrack, R. L ; Evanseck, J. D ; Field, M. J ; Fischer, S ; Gao, J ; Guo, H ; Ha, S ; Joseph-McCarthy, D ; Kuchnir, L ; Kuczera, K ; Lau, F. T. K ; Mattos, C ; Michnick, S ; Ngo, T ; Nguyen, D. T ; Prodhom, B ; Reiher, W. E ; Roux, B ; Schlenkrich, M ; Smith, J. C ; Stote, R ; Straub, J ; Watanabe, M ; Wiórkiewicz-Kuczera, J ; Yin, D ; Karplus, M</creatorcontrib><description>New protein parameters are reported for the all-atom empirical energy function in the CHARMM program. The parameter evaluation was based on a self-consistent approach designed to achieve a balance between the internal (bonding) and interaction (nonbonding) terms of the force field and among the solvent−solvent, solvent−solute, and solute−solute interactions. Optimization of the internal parameters used experimental gas-phase geometries, vibrational spectra, and torsional energy surfaces supplemented with ab initio results. The peptide backbone bonding parameters were optimized with respect to data for N-methylacetamide and the alanine dipeptide. The interaction parameters, particularly the atomic charges, were determined by fitting ab initio interaction energies and geometries of complexes between water and model compounds that represented the backbone and the various side chains. In addition, dipole moments, experimental heats and free energies of vaporization, solvation and sublimation, molecular volumes, and crystal pressures and structures were used in the optimization. The resulting protein parameters were tested by applying them to noncyclic tripeptide crystals, cyclic peptide crystals, and the proteins crambin, bovine pancreatic trypsin inhibitor, and carbonmonoxy myoglobin in vacuo and in crystals. A detailed analysis of the relationship between the alanine dipeptide potential energy surface and calculated protein φ, χ angles was made and used in optimizing the peptide group torsional parameters. The results demonstrate that use of ab initio structural and energetic data by themselves are not sufficient to obtain an adequate backbone representation for peptides and proteins in solution and in crystals. Extensive comparisons between molecular dynamics simulations and experimental data for polypeptides and proteins were performed for both structural and dynamic properties. Energy minimization and dynamics simulations for crystals demonstrate that the latter are needed to obtain meaningful comparisons with experimental crystal structures. The presented parameters, in combination with the previously published CHARMM all-atom parameters for nucleic acids and lipids, provide a consistent set for condensed-phase simulations of a wide variety of molecules of biological interest.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp973084f</identifier><identifier>PMID: 24889800</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry. B, 1998-04, Vol.102 (18), p.3586-3616</ispartof><rights>Copyright © 1998 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a379t-546a589253cdf7d042fd8ec9453cba1eaf8b34b376777256d5136f672f861b593</citedby><cites>FETCH-LOGICAL-a379t-546a589253cdf7d042fd8ec9453cba1eaf8b34b376777256d5136f672f861b593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp973084f$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp973084f$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24889800$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>MacKerell, A. D</creatorcontrib><creatorcontrib>Bashford, D</creatorcontrib><creatorcontrib>Bellott, M</creatorcontrib><creatorcontrib>Dunbrack, R. L</creatorcontrib><creatorcontrib>Evanseck, J. D</creatorcontrib><creatorcontrib>Field, M. J</creatorcontrib><creatorcontrib>Fischer, S</creatorcontrib><creatorcontrib>Gao, J</creatorcontrib><creatorcontrib>Guo, H</creatorcontrib><creatorcontrib>Ha, S</creatorcontrib><creatorcontrib>Joseph-McCarthy, D</creatorcontrib><creatorcontrib>Kuchnir, L</creatorcontrib><creatorcontrib>Kuczera, K</creatorcontrib><creatorcontrib>Lau, F. T. K</creatorcontrib><creatorcontrib>Mattos, C</creatorcontrib><creatorcontrib>Michnick, S</creatorcontrib><creatorcontrib>Ngo, T</creatorcontrib><creatorcontrib>Nguyen, D. T</creatorcontrib><creatorcontrib>Prodhom, B</creatorcontrib><creatorcontrib>Reiher, W. E</creatorcontrib><creatorcontrib>Roux, B</creatorcontrib><creatorcontrib>Schlenkrich, M</creatorcontrib><creatorcontrib>Smith, J. C</creatorcontrib><creatorcontrib>Stote, R</creatorcontrib><creatorcontrib>Straub, J</creatorcontrib><creatorcontrib>Watanabe, M</creatorcontrib><creatorcontrib>Wiórkiewicz-Kuczera, J</creatorcontrib><creatorcontrib>Yin, D</creatorcontrib><creatorcontrib>Karplus, M</creatorcontrib><title>All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>New protein parameters are reported for the all-atom empirical energy function in the CHARMM program. The parameter evaluation was based on a self-consistent approach designed to achieve a balance between the internal (bonding) and interaction (nonbonding) terms of the force field and among the solvent−solvent, solvent−solute, and solute−solute interactions. Optimization of the internal parameters used experimental gas-phase geometries, vibrational spectra, and torsional energy surfaces supplemented with ab initio results. The peptide backbone bonding parameters were optimized with respect to data for N-methylacetamide and the alanine dipeptide. The interaction parameters, particularly the atomic charges, were determined by fitting ab initio interaction energies and geometries of complexes between water and model compounds that represented the backbone and the various side chains. In addition, dipole moments, experimental heats and free energies of vaporization, solvation and sublimation, molecular volumes, and crystal pressures and structures were used in the optimization. The resulting protein parameters were tested by applying them to noncyclic tripeptide crystals, cyclic peptide crystals, and the proteins crambin, bovine pancreatic trypsin inhibitor, and carbonmonoxy myoglobin in vacuo and in crystals. A detailed analysis of the relationship between the alanine dipeptide potential energy surface and calculated protein φ, χ angles was made and used in optimizing the peptide group torsional parameters. The results demonstrate that use of ab initio structural and energetic data by themselves are not sufficient to obtain an adequate backbone representation for peptides and proteins in solution and in crystals. Extensive comparisons between molecular dynamics simulations and experimental data for polypeptides and proteins were performed for both structural and dynamic properties. Energy minimization and dynamics simulations for crystals demonstrate that the latter are needed to obtain meaningful comparisons with experimental crystal structures. The presented parameters, in combination with the previously published CHARMM all-atom parameters for nucleic acids and lipids, provide a consistent set for condensed-phase simulations of a wide variety of molecules of biological interest.</description><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNptkEtLAzEUhYMotlYX_gGZjaCL0byTWZZaH1CxYF0PmUkiKZlJTWYW_fdOae3KxeUeLt89cA4A1wg-IIjR43pTCAIltSdgjBiG-TDi9KA5gnwELlJaQ4gZlvwcjDCVspAQjsFq6n0-7UKTzZuNi65WPluGzrSdG5QNMXsP3tS9VzuljXftd6ZanT1tW9W4OmWfXa-dSVmw2TIOn65Nl-DMKp_M1WFPwNfzfDV7zRcfL2-z6SJXRBRdzihXTBaYkVpboSHFVktTF3Q4VAoZZWVFaEUEF0JgxjVDhFsusJUcVawgE3C3993E8NOb1JWNS7XxXrUm9KlEjGAqCirEgN7v0TqGlKKx5Sa6RsVtiWC5K7E8ljiwNwfbvmqMPpJ_rQ3A7R5QdSrXoY_tkPIfo18QJnee</recordid><startdate>19980430</startdate><enddate>19980430</enddate><creator>MacKerell, A. D</creator><creator>Bashford, D</creator><creator>Bellott, M</creator><creator>Dunbrack, R. L</creator><creator>Evanseck, J. D</creator><creator>Field, M. J</creator><creator>Fischer, S</creator><creator>Gao, J</creator><creator>Guo, H</creator><creator>Ha, S</creator><creator>Joseph-McCarthy, D</creator><creator>Kuchnir, L</creator><creator>Kuczera, K</creator><creator>Lau, F. T. K</creator><creator>Mattos, C</creator><creator>Michnick, S</creator><creator>Ngo, T</creator><creator>Nguyen, D. T</creator><creator>Prodhom, B</creator><creator>Reiher, W. E</creator><creator>Roux, B</creator><creator>Schlenkrich, M</creator><creator>Smith, J. C</creator><creator>Stote, R</creator><creator>Straub, J</creator><creator>Watanabe, M</creator><creator>Wiórkiewicz-Kuczera, J</creator><creator>Yin, D</creator><creator>Karplus, M</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19980430</creationdate><title>All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins</title><author>MacKerell, A. D ; Bashford, D ; Bellott, M ; Dunbrack, R. L ; Evanseck, J. D ; Field, M. J ; Fischer, S ; Gao, J ; Guo, H ; Ha, S ; Joseph-McCarthy, D ; Kuchnir, L ; Kuczera, K ; Lau, F. T. K ; Mattos, C ; Michnick, S ; Ngo, T ; Nguyen, D. T ; Prodhom, B ; Reiher, W. E ; Roux, B ; Schlenkrich, M ; Smith, J. C ; Stote, R ; Straub, J ; Watanabe, M ; Wiórkiewicz-Kuczera, J ; Yin, D ; Karplus, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a379t-546a589253cdf7d042fd8ec9453cba1eaf8b34b376777256d5136f672f861b593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MacKerell, A. D</creatorcontrib><creatorcontrib>Bashford, D</creatorcontrib><creatorcontrib>Bellott, M</creatorcontrib><creatorcontrib>Dunbrack, R. L</creatorcontrib><creatorcontrib>Evanseck, J. D</creatorcontrib><creatorcontrib>Field, M. J</creatorcontrib><creatorcontrib>Fischer, S</creatorcontrib><creatorcontrib>Gao, J</creatorcontrib><creatorcontrib>Guo, H</creatorcontrib><creatorcontrib>Ha, S</creatorcontrib><creatorcontrib>Joseph-McCarthy, D</creatorcontrib><creatorcontrib>Kuchnir, L</creatorcontrib><creatorcontrib>Kuczera, K</creatorcontrib><creatorcontrib>Lau, F. T. K</creatorcontrib><creatorcontrib>Mattos, C</creatorcontrib><creatorcontrib>Michnick, S</creatorcontrib><creatorcontrib>Ngo, T</creatorcontrib><creatorcontrib>Nguyen, D. T</creatorcontrib><creatorcontrib>Prodhom, B</creatorcontrib><creatorcontrib>Reiher, W. E</creatorcontrib><creatorcontrib>Roux, B</creatorcontrib><creatorcontrib>Schlenkrich, M</creatorcontrib><creatorcontrib>Smith, J. C</creatorcontrib><creatorcontrib>Stote, R</creatorcontrib><creatorcontrib>Straub, J</creatorcontrib><creatorcontrib>Watanabe, M</creatorcontrib><creatorcontrib>Wiórkiewicz-Kuczera, J</creatorcontrib><creatorcontrib>Yin, D</creatorcontrib><creatorcontrib>Karplus, M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MacKerell, A. D</au><au>Bashford, D</au><au>Bellott, M</au><au>Dunbrack, R. L</au><au>Evanseck, J. D</au><au>Field, M. J</au><au>Fischer, S</au><au>Gao, J</au><au>Guo, H</au><au>Ha, S</au><au>Joseph-McCarthy, D</au><au>Kuchnir, L</au><au>Kuczera, K</au><au>Lau, F. T. K</au><au>Mattos, C</au><au>Michnick, S</au><au>Ngo, T</au><au>Nguyen, D. T</au><au>Prodhom, B</au><au>Reiher, W. E</au><au>Roux, B</au><au>Schlenkrich, M</au><au>Smith, J. C</au><au>Stote, R</au><au>Straub, J</au><au>Watanabe, M</au><au>Wiórkiewicz-Kuczera, J</au><au>Yin, D</au><au>Karplus, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>1998-04-30</date><risdate>1998</risdate><volume>102</volume><issue>18</issue><spage>3586</spage><epage>3616</epage><pages>3586-3616</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>New protein parameters are reported for the all-atom empirical energy function in the CHARMM program. The parameter evaluation was based on a self-consistent approach designed to achieve a balance between the internal (bonding) and interaction (nonbonding) terms of the force field and among the solvent−solvent, solvent−solute, and solute−solute interactions. Optimization of the internal parameters used experimental gas-phase geometries, vibrational spectra, and torsional energy surfaces supplemented with ab initio results. The peptide backbone bonding parameters were optimized with respect to data for N-methylacetamide and the alanine dipeptide. The interaction parameters, particularly the atomic charges, were determined by fitting ab initio interaction energies and geometries of complexes between water and model compounds that represented the backbone and the various side chains. In addition, dipole moments, experimental heats and free energies of vaporization, solvation and sublimation, molecular volumes, and crystal pressures and structures were used in the optimization. The resulting protein parameters were tested by applying them to noncyclic tripeptide crystals, cyclic peptide crystals, and the proteins crambin, bovine pancreatic trypsin inhibitor, and carbonmonoxy myoglobin in vacuo and in crystals. A detailed analysis of the relationship between the alanine dipeptide potential energy surface and calculated protein φ, χ angles was made and used in optimizing the peptide group torsional parameters. The results demonstrate that use of ab initio structural and energetic data by themselves are not sufficient to obtain an adequate backbone representation for peptides and proteins in solution and in crystals. Extensive comparisons between molecular dynamics simulations and experimental data for polypeptides and proteins were performed for both structural and dynamic properties. Energy minimization and dynamics simulations for crystals demonstrate that the latter are needed to obtain meaningful comparisons with experimental crystal structures. The presented parameters, in combination with the previously published CHARMM all-atom parameters for nucleic acids and lipids, provide a consistent set for condensed-phase simulations of a wide variety of molecules of biological interest.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24889800</pmid><doi>10.1021/jp973084f</doi><tpages>31</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 1998-04, Vol.102 (18), p.3586-3616
issn 1520-6106
1520-5207
language eng
recordid cdi_proquest_miscellaneous_1532479477
source American Chemical Society Journals
title All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A45%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=All-Atom%20Empirical%20Potential%20for%20Molecular%20Modeling%20and%20Dynamics%20Studies%20of%20Proteins&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=MacKerell,%20A.%20D&rft.date=1998-04-30&rft.volume=102&rft.issue=18&rft.spage=3586&rft.epage=3616&rft.pages=3586-3616&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp973084f&rft_dat=%3Cproquest_cross%3E1532479477%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1532479477&rft_id=info:pmid/24889800&rfr_iscdi=true