Experimental and Theoretical Investigations of Electronic Structure and Photoluminescence Properties of β‑Ag2MoO4 Microcrystals

In this paper, we investigate a correlation between theoretical calculations and experimental data to explain the electronic structure and optical properties of silver molybdate (β-Ag2MoO4) microcrystals synthesized by the microwave-assisted hydrothermal method. X-ray diffraction, Rietveld refinemen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry 2014-06, Vol.53 (11), p.5589-5599
Hauptverfasser: Gouveia, A. F, Sczancoski, J. C, Ferrer, M. M, Lima, A. S, Santos, M. R. M. C, Li, M. Siu, Santos, R. S, Longo, E, Cavalcante, L. S
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5599
container_issue 11
container_start_page 5589
container_title Inorganic chemistry
container_volume 53
creator Gouveia, A. F
Sczancoski, J. C
Ferrer, M. M
Lima, A. S
Santos, M. R. M. C
Li, M. Siu
Santos, R. S
Longo, E
Cavalcante, L. S
description In this paper, we investigate a correlation between theoretical calculations and experimental data to explain the electronic structure and optical properties of silver molybdate (β-Ag2MoO4) microcrystals synthesized by the microwave-assisted hydrothermal method. X-ray diffraction, Rietveld refinement, and micro-Raman spectroscopy confirmed that these microcrystals crystallize in a spinel-type cubic structure. Field-emission scanning electron microscopy images revealed that the processing temperatures influence in the final shape of microcrystals. Optical properties were analyzed by ultraviolet–visible diffuse reflectance spectroscopy; the increase in the optical band gap energy (E gap) (from 3.24 to 3.31 eV) with processing temperature is associated with the reduction of intermediary energy levels. First-principles quantum mechanical calculations based on the density functional theory at the B3LYP level were conducted. The calculated band structure revealed an indirect E gap of approximately 4.00 and 3.34 eV for the β-Ag2MoO4 without and with the formation of defects, respectively. Theoretical calculations based on density of states and electron density maps were employed to understand the polarization phenomenon induced by structural defects in the β-Ag2MoO4 crystals. Finally, photoluminescence properties at room temperature of β-Ag2MoO4 microcrystals were explained by the charge-transfer mechanism involving tetrahedral [MoO4] clusters.
doi_str_mv 10.1021/ic500335x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1531951796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1531951796</sourcerecordid><originalsourceid>FETCH-LOGICAL-a241t-184f3c751cea1dfc512dce00a7e5f87161fcc58ef1ec5eb55b96451950137f483</originalsourceid><addsrcrecordid>eNo9kUtOAzEMhiMEoqWw4AJoNkhsCvHMZB7LCpWHVEQlisRulLoeSDVNSpJBZYe4AVfhIByCkxAosLItfb_922ZsH_gx8BhOFArOk0SsNlgXRMz7AvjdJutyHnLIsrLDdpybc87LJM22WSdOizTkosteh6slWbUg7WUTST2LJg9kLHmFob7UT-S8updeGe0iU0fDhtBboxVGN9626FtLP7Lxg_GmaRdKk0PSSNHYmtDaK_oRfrx_vrwN7uMrc51GVwqtQfvswlC3y7bqEGjvN_bY7dlwcnrRH12fX54ORn0Zp-D7UKR1grkAJAmzGgXEMyTOZU6iLnLIoEYUBdVAKGgqxLTMUgGl4JDkdVokPXa07ru05rENe1ULFaw2jdRkWleBSAINeZkF9OAXbacLmlXLcCFpn6u_uwXgcA1IdNXctFYH5xXw6vsf1f8_ki9PDH7D</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1531951796</pqid></control><display><type>article</type><title>Experimental and Theoretical Investigations of Electronic Structure and Photoluminescence Properties of β‑Ag2MoO4 Microcrystals</title><source>American Chemical Society (ACS) Journals</source><creator>Gouveia, A. F ; Sczancoski, J. C ; Ferrer, M. M ; Lima, A. S ; Santos, M. R. M. C ; Li, M. Siu ; Santos, R. S ; Longo, E ; Cavalcante, L. S</creator><creatorcontrib>Gouveia, A. F ; Sczancoski, J. C ; Ferrer, M. M ; Lima, A. S ; Santos, M. R. M. C ; Li, M. Siu ; Santos, R. S ; Longo, E ; Cavalcante, L. S</creatorcontrib><description>In this paper, we investigate a correlation between theoretical calculations and experimental data to explain the electronic structure and optical properties of silver molybdate (β-Ag2MoO4) microcrystals synthesized by the microwave-assisted hydrothermal method. X-ray diffraction, Rietveld refinement, and micro-Raman spectroscopy confirmed that these microcrystals crystallize in a spinel-type cubic structure. Field-emission scanning electron microscopy images revealed that the processing temperatures influence in the final shape of microcrystals. Optical properties were analyzed by ultraviolet–visible diffuse reflectance spectroscopy; the increase in the optical band gap energy (E gap) (from 3.24 to 3.31 eV) with processing temperature is associated with the reduction of intermediary energy levels. First-principles quantum mechanical calculations based on the density functional theory at the B3LYP level were conducted. The calculated band structure revealed an indirect E gap of approximately 4.00 and 3.34 eV for the β-Ag2MoO4 without and with the formation of defects, respectively. Theoretical calculations based on density of states and electron density maps were employed to understand the polarization phenomenon induced by structural defects in the β-Ag2MoO4 crystals. Finally, photoluminescence properties at room temperature of β-Ag2MoO4 microcrystals were explained by the charge-transfer mechanism involving tetrahedral [MoO4] clusters.</description><identifier>ISSN: 0020-1669</identifier><identifier>EISSN: 1520-510X</identifier><identifier>DOI: 10.1021/ic500335x</identifier><identifier>PMID: 24840935</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Inorganic chemistry, 2014-06, Vol.53 (11), p.5589-5599</ispartof><rights>Copyright © 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ic500335x$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ic500335x$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24840935$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gouveia, A. F</creatorcontrib><creatorcontrib>Sczancoski, J. C</creatorcontrib><creatorcontrib>Ferrer, M. M</creatorcontrib><creatorcontrib>Lima, A. S</creatorcontrib><creatorcontrib>Santos, M. R. M. C</creatorcontrib><creatorcontrib>Li, M. Siu</creatorcontrib><creatorcontrib>Santos, R. S</creatorcontrib><creatorcontrib>Longo, E</creatorcontrib><creatorcontrib>Cavalcante, L. S</creatorcontrib><title>Experimental and Theoretical Investigations of Electronic Structure and Photoluminescence Properties of β‑Ag2MoO4 Microcrystals</title><title>Inorganic chemistry</title><addtitle>Inorg. Chem</addtitle><description>In this paper, we investigate a correlation between theoretical calculations and experimental data to explain the electronic structure and optical properties of silver molybdate (β-Ag2MoO4) microcrystals synthesized by the microwave-assisted hydrothermal method. X-ray diffraction, Rietveld refinement, and micro-Raman spectroscopy confirmed that these microcrystals crystallize in a spinel-type cubic structure. Field-emission scanning electron microscopy images revealed that the processing temperatures influence in the final shape of microcrystals. Optical properties were analyzed by ultraviolet–visible diffuse reflectance spectroscopy; the increase in the optical band gap energy (E gap) (from 3.24 to 3.31 eV) with processing temperature is associated with the reduction of intermediary energy levels. First-principles quantum mechanical calculations based on the density functional theory at the B3LYP level were conducted. The calculated band structure revealed an indirect E gap of approximately 4.00 and 3.34 eV for the β-Ag2MoO4 without and with the formation of defects, respectively. Theoretical calculations based on density of states and electron density maps were employed to understand the polarization phenomenon induced by structural defects in the β-Ag2MoO4 crystals. Finally, photoluminescence properties at room temperature of β-Ag2MoO4 microcrystals were explained by the charge-transfer mechanism involving tetrahedral [MoO4] clusters.</description><issn>0020-1669</issn><issn>1520-510X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kUtOAzEMhiMEoqWw4AJoNkhsCvHMZB7LCpWHVEQlisRulLoeSDVNSpJBZYe4AVfhIByCkxAosLItfb_922ZsH_gx8BhOFArOk0SsNlgXRMz7AvjdJutyHnLIsrLDdpybc87LJM22WSdOizTkosteh6slWbUg7WUTST2LJg9kLHmFob7UT-S8updeGe0iU0fDhtBboxVGN9626FtLP7Lxg_GmaRdKk0PSSNHYmtDaK_oRfrx_vrwN7uMrc51GVwqtQfvswlC3y7bqEGjvN_bY7dlwcnrRH12fX54ORn0Zp-D7UKR1grkAJAmzGgXEMyTOZU6iLnLIoEYUBdVAKGgqxLTMUgGl4JDkdVokPXa07ru05rENe1ULFaw2jdRkWleBSAINeZkF9OAXbacLmlXLcCFpn6u_uwXgcA1IdNXctFYH5xXw6vsf1f8_ki9PDH7D</recordid><startdate>20140602</startdate><enddate>20140602</enddate><creator>Gouveia, A. F</creator><creator>Sczancoski, J. C</creator><creator>Ferrer, M. M</creator><creator>Lima, A. S</creator><creator>Santos, M. R. M. C</creator><creator>Li, M. Siu</creator><creator>Santos, R. S</creator><creator>Longo, E</creator><creator>Cavalcante, L. S</creator><general>American Chemical Society</general><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20140602</creationdate><title>Experimental and Theoretical Investigations of Electronic Structure and Photoluminescence Properties of β‑Ag2MoO4 Microcrystals</title><author>Gouveia, A. F ; Sczancoski, J. C ; Ferrer, M. M ; Lima, A. S ; Santos, M. R. M. C ; Li, M. Siu ; Santos, R. S ; Longo, E ; Cavalcante, L. S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a241t-184f3c751cea1dfc512dce00a7e5f87161fcc58ef1ec5eb55b96451950137f483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gouveia, A. F</creatorcontrib><creatorcontrib>Sczancoski, J. C</creatorcontrib><creatorcontrib>Ferrer, M. M</creatorcontrib><creatorcontrib>Lima, A. S</creatorcontrib><creatorcontrib>Santos, M. R. M. C</creatorcontrib><creatorcontrib>Li, M. Siu</creatorcontrib><creatorcontrib>Santos, R. S</creatorcontrib><creatorcontrib>Longo, E</creatorcontrib><creatorcontrib>Cavalcante, L. S</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gouveia, A. F</au><au>Sczancoski, J. C</au><au>Ferrer, M. M</au><au>Lima, A. S</au><au>Santos, M. R. M. C</au><au>Li, M. Siu</au><au>Santos, R. S</au><au>Longo, E</au><au>Cavalcante, L. S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental and Theoretical Investigations of Electronic Structure and Photoluminescence Properties of β‑Ag2MoO4 Microcrystals</atitle><jtitle>Inorganic chemistry</jtitle><addtitle>Inorg. Chem</addtitle><date>2014-06-02</date><risdate>2014</risdate><volume>53</volume><issue>11</issue><spage>5589</spage><epage>5599</epage><pages>5589-5599</pages><issn>0020-1669</issn><eissn>1520-510X</eissn><abstract>In this paper, we investigate a correlation between theoretical calculations and experimental data to explain the electronic structure and optical properties of silver molybdate (β-Ag2MoO4) microcrystals synthesized by the microwave-assisted hydrothermal method. X-ray diffraction, Rietveld refinement, and micro-Raman spectroscopy confirmed that these microcrystals crystallize in a spinel-type cubic structure. Field-emission scanning electron microscopy images revealed that the processing temperatures influence in the final shape of microcrystals. Optical properties were analyzed by ultraviolet–visible diffuse reflectance spectroscopy; the increase in the optical band gap energy (E gap) (from 3.24 to 3.31 eV) with processing temperature is associated with the reduction of intermediary energy levels. First-principles quantum mechanical calculations based on the density functional theory at the B3LYP level were conducted. The calculated band structure revealed an indirect E gap of approximately 4.00 and 3.34 eV for the β-Ag2MoO4 without and with the formation of defects, respectively. Theoretical calculations based on density of states and electron density maps were employed to understand the polarization phenomenon induced by structural defects in the β-Ag2MoO4 crystals. Finally, photoluminescence properties at room temperature of β-Ag2MoO4 microcrystals were explained by the charge-transfer mechanism involving tetrahedral [MoO4] clusters.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24840935</pmid><doi>10.1021/ic500335x</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-1669
ispartof Inorganic chemistry, 2014-06, Vol.53 (11), p.5589-5599
issn 0020-1669
1520-510X
language eng
recordid cdi_proquest_miscellaneous_1531951796
source American Chemical Society (ACS) Journals
title Experimental and Theoretical Investigations of Electronic Structure and Photoluminescence Properties of β‑Ag2MoO4 Microcrystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A26%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20and%20Theoretical%20Investigations%20of%20Electronic%20Structure%20and%20Photoluminescence%20Properties%20of%20%CE%B2%E2%80%91Ag2MoO4%20Microcrystals&rft.jtitle=Inorganic%20chemistry&rft.au=Gouveia,%20A.%20F&rft.date=2014-06-02&rft.volume=53&rft.issue=11&rft.spage=5589&rft.epage=5599&rft.pages=5589-5599&rft.issn=0020-1669&rft.eissn=1520-510X&rft_id=info:doi/10.1021/ic500335x&rft_dat=%3Cproquest_pubme%3E1531951796%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1531951796&rft_id=info:pmid/24840935&rfr_iscdi=true