Methane membrane steam reforming: Heat duty assessment
Membrane reactors are an innovative technology with huge application potentialities for equilibrium limited endothermic reactions. Assembling a membrane selective to a reaction product avoids the equilibrium conditions to be achieved, supporting the reactions at lower operating temperatures. Taking...
Gespeichert in:
Veröffentlicht in: | International journal of hydrogen energy 2014-03, Vol.39 (9), p.4761-4770 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4770 |
---|---|
container_issue | 9 |
container_start_page | 4761 |
container_title | International journal of hydrogen energy |
container_volume | 39 |
creator | De Falco, M. Piemonte, V. Di Paola, L. Basile, A. |
description | Membrane reactors are an innovative technology with huge application potentialities for equilibrium limited endothermic reactions. Assembling a membrane selective to a reaction product avoids the equilibrium conditions to be achieved, supporting the reactions at lower operating temperatures. Taking as an example the natural gas steam reforming, a methane conversion around 98% can be reached imposing an operating temperature of 823 K, much lower than that of the traditional process. In the present paper, a stringent analysis of heat power requirement needed to carry out the natural gas steam reforming process by applying a membrane reactor is made. The simulations allows to understand how the main operating parameters (inlet temperature, inlet methane flow-rate, steam to carbon ratio, ratio between sweeping steam and inlet methane, operating reaction pressure) influence the total heat power required by the process, divided among power contributions for the reaction heat duty, reactant steam and permeation steam generation and preheating. Moreover, the specific thermal energy per mole of pure H2 is computed and assessed. Optimizing the operating conditions set, a specific thermal energy per mole of pure hydrogen of 92.3 kWh kmol−1 is obtained corresponding to a total thermal power of 687.4 kW required to convert, in a single membrane reactor, a methane flow-rate of 2 kmol h−1 (GHSV = 9.590 h−1) with a conversion around 98%.
•A study on the heat duty for methane steam reforming membrane reactor is presented.•The study is based on a two-dimensional pseudo-homogeneous reactor model.•The heat duty for reaction, steam generation and preheating are compared.•Specific thermal energy per mole of pure hydrogen of 92.3 kWh kmol−1 is obtained. |
doi_str_mv | 10.1016/j.ijhydene.2013.09.066 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1531033542</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319913022891</els_id><sourcerecordid>1531033542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-c8e47850364f7d5060ebddc647310613c7a8c425a56893bab140376d125e85ec3</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EEqXwF1AuSFwS7PgVcwIhoEhFXOBsOfaGOsqj2ClS_z2uWrhy2j3M7Mx-CF0SXBBMxE1b-Ha1dTBAUWJCC6wKLMQRmpFKqpyySh6jGaYC55QodYrOYmwxJhIzNUPiFaaVGSDroa_DbokTmD4L0Iyh98PnbbYAM2VuM20zEyPE2MMwnaOTxnQRLg5zjj6eHt8fFvny7fnl4X6ZWyarKbcVpMlTOGuk41hgqJ2zgklKsCDUSlNZVnLDRaVobWrCMJXCkZJDxcHSObre312H8WsDcdK9jxa6LjUdN1ETng5RylmZpGIvtWGMMfXX6-B7E7aaYL0DpVv9C0rvQGmsdAKVjFeHDBOt6ZpEwfr45y4ryktCVNLd7XWQHv72EHS0HgYLzgewk3aj_y_qB15ggJk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1531033542</pqid></control><display><type>article</type><title>Methane membrane steam reforming: Heat duty assessment</title><source>Elsevier ScienceDirect Journals</source><creator>De Falco, M. ; Piemonte, V. ; Di Paola, L. ; Basile, A.</creator><creatorcontrib>De Falco, M. ; Piemonte, V. ; Di Paola, L. ; Basile, A.</creatorcontrib><description>Membrane reactors are an innovative technology with huge application potentialities for equilibrium limited endothermic reactions. Assembling a membrane selective to a reaction product avoids the equilibrium conditions to be achieved, supporting the reactions at lower operating temperatures. Taking as an example the natural gas steam reforming, a methane conversion around 98% can be reached imposing an operating temperature of 823 K, much lower than that of the traditional process. In the present paper, a stringent analysis of heat power requirement needed to carry out the natural gas steam reforming process by applying a membrane reactor is made. The simulations allows to understand how the main operating parameters (inlet temperature, inlet methane flow-rate, steam to carbon ratio, ratio between sweeping steam and inlet methane, operating reaction pressure) influence the total heat power required by the process, divided among power contributions for the reaction heat duty, reactant steam and permeation steam generation and preheating. Moreover, the specific thermal energy per mole of pure H2 is computed and assessed. Optimizing the operating conditions set, a specific thermal energy per mole of pure hydrogen of 92.3 kWh kmol−1 is obtained corresponding to a total thermal power of 687.4 kW required to convert, in a single membrane reactor, a methane flow-rate of 2 kmol h−1 (GHSV = 9.590 h−1) with a conversion around 98%.
•A study on the heat duty for methane steam reforming membrane reactor is presented.•The study is based on a two-dimensional pseudo-homogeneous reactor model.•The heat duty for reaction, steam generation and preheating are compared.•Specific thermal energy per mole of pure hydrogen of 92.3 kWh kmol−1 is obtained.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2013.09.066</identifier><identifier>CODEN: IJHEDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Alternative fuels. Production and utilization ; Applied sciences ; Energy ; Exact sciences and technology ; Fuels ; Hydrogen ; Hydrogen production ; Inlets ; Membranes ; Methane ; Natural gas ; Natural gas steam reforming ; Operating temperature ; Pd-based membrane ; Process heat duty requirements ; Reactors ; Reforming ; Selective membrane ; Steam electric power generation</subject><ispartof>International journal of hydrogen energy, 2014-03, Vol.39 (9), p.4761-4770</ispartof><rights>2013 Hydrogen Energy Publications, LLC.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-c8e47850364f7d5060ebddc647310613c7a8c425a56893bab140376d125e85ec3</citedby><cites>FETCH-LOGICAL-c478t-c8e47850364f7d5060ebddc647310613c7a8c425a56893bab140376d125e85ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360319913022891$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28352119$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>De Falco, M.</creatorcontrib><creatorcontrib>Piemonte, V.</creatorcontrib><creatorcontrib>Di Paola, L.</creatorcontrib><creatorcontrib>Basile, A.</creatorcontrib><title>Methane membrane steam reforming: Heat duty assessment</title><title>International journal of hydrogen energy</title><description>Membrane reactors are an innovative technology with huge application potentialities for equilibrium limited endothermic reactions. Assembling a membrane selective to a reaction product avoids the equilibrium conditions to be achieved, supporting the reactions at lower operating temperatures. Taking as an example the natural gas steam reforming, a methane conversion around 98% can be reached imposing an operating temperature of 823 K, much lower than that of the traditional process. In the present paper, a stringent analysis of heat power requirement needed to carry out the natural gas steam reforming process by applying a membrane reactor is made. The simulations allows to understand how the main operating parameters (inlet temperature, inlet methane flow-rate, steam to carbon ratio, ratio between sweeping steam and inlet methane, operating reaction pressure) influence the total heat power required by the process, divided among power contributions for the reaction heat duty, reactant steam and permeation steam generation and preheating. Moreover, the specific thermal energy per mole of pure H2 is computed and assessed. Optimizing the operating conditions set, a specific thermal energy per mole of pure hydrogen of 92.3 kWh kmol−1 is obtained corresponding to a total thermal power of 687.4 kW required to convert, in a single membrane reactor, a methane flow-rate of 2 kmol h−1 (GHSV = 9.590 h−1) with a conversion around 98%.
•A study on the heat duty for methane steam reforming membrane reactor is presented.•The study is based on a two-dimensional pseudo-homogeneous reactor model.•The heat duty for reaction, steam generation and preheating are compared.•Specific thermal energy per mole of pure hydrogen of 92.3 kWh kmol−1 is obtained.</description><subject>Alternative fuels. Production and utilization</subject><subject>Applied sciences</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Fuels</subject><subject>Hydrogen</subject><subject>Hydrogen production</subject><subject>Inlets</subject><subject>Membranes</subject><subject>Methane</subject><subject>Natural gas</subject><subject>Natural gas steam reforming</subject><subject>Operating temperature</subject><subject>Pd-based membrane</subject><subject>Process heat duty requirements</subject><subject>Reactors</subject><subject>Reforming</subject><subject>Selective membrane</subject><subject>Steam electric power generation</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhC0EEqXwF1AuSFwS7PgVcwIhoEhFXOBsOfaGOsqj2ClS_z2uWrhy2j3M7Mx-CF0SXBBMxE1b-Ha1dTBAUWJCC6wKLMQRmpFKqpyySh6jGaYC55QodYrOYmwxJhIzNUPiFaaVGSDroa_DbokTmD4L0Iyh98PnbbYAM2VuM20zEyPE2MMwnaOTxnQRLg5zjj6eHt8fFvny7fnl4X6ZWyarKbcVpMlTOGuk41hgqJ2zgklKsCDUSlNZVnLDRaVobWrCMJXCkZJDxcHSObre312H8WsDcdK9jxa6LjUdN1ETng5RylmZpGIvtWGMMfXX6-B7E7aaYL0DpVv9C0rvQGmsdAKVjFeHDBOt6ZpEwfr45y4ryktCVNLd7XWQHv72EHS0HgYLzgewk3aj_y_qB15ggJk</recordid><startdate>20140318</startdate><enddate>20140318</enddate><creator>De Falco, M.</creator><creator>Piemonte, V.</creator><creator>Di Paola, L.</creator><creator>Basile, A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20140318</creationdate><title>Methane membrane steam reforming: Heat duty assessment</title><author>De Falco, M. ; Piemonte, V. ; Di Paola, L. ; Basile, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-c8e47850364f7d5060ebddc647310613c7a8c425a56893bab140376d125e85ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alternative fuels. Production and utilization</topic><topic>Applied sciences</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Fuels</topic><topic>Hydrogen</topic><topic>Hydrogen production</topic><topic>Inlets</topic><topic>Membranes</topic><topic>Methane</topic><topic>Natural gas</topic><topic>Natural gas steam reforming</topic><topic>Operating temperature</topic><topic>Pd-based membrane</topic><topic>Process heat duty requirements</topic><topic>Reactors</topic><topic>Reforming</topic><topic>Selective membrane</topic><topic>Steam electric power generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Falco, M.</creatorcontrib><creatorcontrib>Piemonte, V.</creatorcontrib><creatorcontrib>Di Paola, L.</creatorcontrib><creatorcontrib>Basile, A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Falco, M.</au><au>Piemonte, V.</au><au>Di Paola, L.</au><au>Basile, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Methane membrane steam reforming: Heat duty assessment</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2014-03-18</date><risdate>2014</risdate><volume>39</volume><issue>9</issue><spage>4761</spage><epage>4770</epage><pages>4761-4770</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><coden>IJHEDX</coden><abstract>Membrane reactors are an innovative technology with huge application potentialities for equilibrium limited endothermic reactions. Assembling a membrane selective to a reaction product avoids the equilibrium conditions to be achieved, supporting the reactions at lower operating temperatures. Taking as an example the natural gas steam reforming, a methane conversion around 98% can be reached imposing an operating temperature of 823 K, much lower than that of the traditional process. In the present paper, a stringent analysis of heat power requirement needed to carry out the natural gas steam reforming process by applying a membrane reactor is made. The simulations allows to understand how the main operating parameters (inlet temperature, inlet methane flow-rate, steam to carbon ratio, ratio between sweeping steam and inlet methane, operating reaction pressure) influence the total heat power required by the process, divided among power contributions for the reaction heat duty, reactant steam and permeation steam generation and preheating. Moreover, the specific thermal energy per mole of pure H2 is computed and assessed. Optimizing the operating conditions set, a specific thermal energy per mole of pure hydrogen of 92.3 kWh kmol−1 is obtained corresponding to a total thermal power of 687.4 kW required to convert, in a single membrane reactor, a methane flow-rate of 2 kmol h−1 (GHSV = 9.590 h−1) with a conversion around 98%.
•A study on the heat duty for methane steam reforming membrane reactor is presented.•The study is based on a two-dimensional pseudo-homogeneous reactor model.•The heat duty for reaction, steam generation and preheating are compared.•Specific thermal energy per mole of pure hydrogen of 92.3 kWh kmol−1 is obtained.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2013.09.066</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-3199 |
ispartof | International journal of hydrogen energy, 2014-03, Vol.39 (9), p.4761-4770 |
issn | 0360-3199 1879-3487 |
language | eng |
recordid | cdi_proquest_miscellaneous_1531033542 |
source | Elsevier ScienceDirect Journals |
subjects | Alternative fuels. Production and utilization Applied sciences Energy Exact sciences and technology Fuels Hydrogen Hydrogen production Inlets Membranes Methane Natural gas Natural gas steam reforming Operating temperature Pd-based membrane Process heat duty requirements Reactors Reforming Selective membrane Steam electric power generation |
title | Methane membrane steam reforming: Heat duty assessment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A00%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Methane%20membrane%20steam%20reforming:%20Heat%20duty%20assessment&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=De%20Falco,%20M.&rft.date=2014-03-18&rft.volume=39&rft.issue=9&rft.spage=4761&rft.epage=4770&rft.pages=4761-4770&rft.issn=0360-3199&rft.eissn=1879-3487&rft.coden=IJHEDX&rft_id=info:doi/10.1016/j.ijhydene.2013.09.066&rft_dat=%3Cproquest_cross%3E1531033542%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1531033542&rft_id=info:pmid/&rft_els_id=S0360319913022891&rfr_iscdi=true |