Chebyshev action on finite fields

Given a polynomial ϕ(x) and a finite field Fq one can construct a directed graph where the vertices are the values in the finite field, and emanating from each vertex is an edge joining the vertex to its image under ϕ. When ϕ is a Chebyshev polynomial of prime degree, the graphs display an unusual d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics 2014-02, Vol.315-316, p.83-94
1. Verfasser: Alden Gassert, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 94
container_issue
container_start_page 83
container_title Discrete mathematics
container_volume 315-316
creator Alden Gassert, T.
description Given a polynomial ϕ(x) and a finite field Fq one can construct a directed graph where the vertices are the values in the finite field, and emanating from each vertex is an edge joining the vertex to its image under ϕ. When ϕ is a Chebyshev polynomial of prime degree, the graphs display an unusual degree of symmetry. In this paper we provide a complete description of these graphs, and then use these graphs to determine the decomposition of primes in the Chebyshev radical extensions.
doi_str_mv 10.1016/j.disc.2013.10.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1531032490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012365X1300441X</els_id><sourcerecordid>1531032490</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-cc68826309e319d48bc81edab21dcea60abc679870e840f0e01de5ca6655d8673</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU_rzUvrTNKmKXiRxX-w4EVhbyFNpmyWbrsm3QW_vSnrWRh4zOO9gfkxdouQI6B82ObOR5tzQJGMHLA4YzNUFc-kwvU5mwEgz4Qs15fsKsYtpF0KNWN3yw01P3FDx4Wxox_6RZrW936kJNS5eM0uWtNFuvnTOft6ef5cvmWrj9f35dMqs6KqxsxaqRSXAmoSWLtCNVYhOdNwdJaMBNNYWdWqAlIFtECAjkprpCxLp2Ql5uz-dHcfhu8DxVHv0kvUdaan4RA1lgJB8KKGFOWnqA1DjIFavQ9-Z8KPRtATD73VEw898Zi8xCOVHk8lSk8cPQUdrafekvOB7Kjd4P-r_wI-3Ge1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1531032490</pqid></control><display><type>article</type><title>Chebyshev action on finite fields</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Alden Gassert, T.</creator><creatorcontrib>Alden Gassert, T.</creatorcontrib><description>Given a polynomial ϕ(x) and a finite field Fq one can construct a directed graph where the vertices are the values in the finite field, and emanating from each vertex is an edge joining the vertex to its image under ϕ. When ϕ is a Chebyshev polynomial of prime degree, the graphs display an unusual degree of symmetry. In this paper we provide a complete description of these graphs, and then use these graphs to determine the decomposition of primes in the Chebyshev radical extensions.</description><identifier>ISSN: 0012-365X</identifier><identifier>EISSN: 1872-681X</identifier><identifier>DOI: 10.1016/j.disc.2013.10.014</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Chebyshev approximation ; Chebyshev polynomial ; Emission ; Finite field ; Graph theory ; Graphs ; Iterated polynomial ; Mathematical analysis ; Polynomials ; Post-critically finite map ; Prime decomposition ; Radicals ; Symmetry</subject><ispartof>Discrete mathematics, 2014-02, Vol.315-316, p.83-94</ispartof><rights>2013 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-cc68826309e319d48bc81edab21dcea60abc679870e840f0e01de5ca6655d8673</citedby><cites>FETCH-LOGICAL-c377t-cc68826309e319d48bc81edab21dcea60abc679870e840f0e01de5ca6655d8673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.disc.2013.10.014$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Alden Gassert, T.</creatorcontrib><title>Chebyshev action on finite fields</title><title>Discrete mathematics</title><description>Given a polynomial ϕ(x) and a finite field Fq one can construct a directed graph where the vertices are the values in the finite field, and emanating from each vertex is an edge joining the vertex to its image under ϕ. When ϕ is a Chebyshev polynomial of prime degree, the graphs display an unusual degree of symmetry. In this paper we provide a complete description of these graphs, and then use these graphs to determine the decomposition of primes in the Chebyshev radical extensions.</description><subject>Chebyshev approximation</subject><subject>Chebyshev polynomial</subject><subject>Emission</subject><subject>Finite field</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Iterated polynomial</subject><subject>Mathematical analysis</subject><subject>Polynomials</subject><subject>Post-critically finite map</subject><subject>Prime decomposition</subject><subject>Radicals</subject><subject>Symmetry</subject><issn>0012-365X</issn><issn>1872-681X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU_rzUvrTNKmKXiRxX-w4EVhbyFNpmyWbrsm3QW_vSnrWRh4zOO9gfkxdouQI6B82ObOR5tzQJGMHLA4YzNUFc-kwvU5mwEgz4Qs15fsKsYtpF0KNWN3yw01P3FDx4Wxox_6RZrW936kJNS5eM0uWtNFuvnTOft6ef5cvmWrj9f35dMqs6KqxsxaqRSXAmoSWLtCNVYhOdNwdJaMBNNYWdWqAlIFtECAjkprpCxLp2Ql5uz-dHcfhu8DxVHv0kvUdaan4RA1lgJB8KKGFOWnqA1DjIFavQ9-Z8KPRtATD73VEw898Zi8xCOVHk8lSk8cPQUdrafekvOB7Kjd4P-r_wI-3Ge1</recordid><startdate>20140206</startdate><enddate>20140206</enddate><creator>Alden Gassert, T.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140206</creationdate><title>Chebyshev action on finite fields</title><author>Alden Gassert, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-cc68826309e319d48bc81edab21dcea60abc679870e840f0e01de5ca6655d8673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Chebyshev approximation</topic><topic>Chebyshev polynomial</topic><topic>Emission</topic><topic>Finite field</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Iterated polynomial</topic><topic>Mathematical analysis</topic><topic>Polynomials</topic><topic>Post-critically finite map</topic><topic>Prime decomposition</topic><topic>Radicals</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alden Gassert, T.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alden Gassert, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chebyshev action on finite fields</atitle><jtitle>Discrete mathematics</jtitle><date>2014-02-06</date><risdate>2014</risdate><volume>315-316</volume><spage>83</spage><epage>94</epage><pages>83-94</pages><issn>0012-365X</issn><eissn>1872-681X</eissn><abstract>Given a polynomial ϕ(x) and a finite field Fq one can construct a directed graph where the vertices are the values in the finite field, and emanating from each vertex is an edge joining the vertex to its image under ϕ. When ϕ is a Chebyshev polynomial of prime degree, the graphs display an unusual degree of symmetry. In this paper we provide a complete description of these graphs, and then use these graphs to determine the decomposition of primes in the Chebyshev radical extensions.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.disc.2013.10.014</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-365X
ispartof Discrete mathematics, 2014-02, Vol.315-316, p.83-94
issn 0012-365X
1872-681X
language eng
recordid cdi_proquest_miscellaneous_1531032490
source Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects Chebyshev approximation
Chebyshev polynomial
Emission
Finite field
Graph theory
Graphs
Iterated polynomial
Mathematical analysis
Polynomials
Post-critically finite map
Prime decomposition
Radicals
Symmetry
title Chebyshev action on finite fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T17%3A14%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chebyshev%20action%20on%20finite%20fields&rft.jtitle=Discrete%20mathematics&rft.au=Alden%20Gassert,%20T.&rft.date=2014-02-06&rft.volume=315-316&rft.spage=83&rft.epage=94&rft.pages=83-94&rft.issn=0012-365X&rft.eissn=1872-681X&rft_id=info:doi/10.1016/j.disc.2013.10.014&rft_dat=%3Cproquest_cross%3E1531032490%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1531032490&rft_id=info:pmid/&rft_els_id=S0012365X1300441X&rfr_iscdi=true