An enhanced discriminability recurrent fuzzy neural network for temporal classification problems
This paper proposes an enhanced discriminability recurrent fuzzy neural network for temporal classification problems. To consider classification problems, the most important consideration is the “discriminability”. To enhance the “discriminability”, the feedback topology of the proposed fuzzy neural...
Gespeichert in:
Veröffentlicht in: | Fuzzy sets and systems 2014-02, Vol.237, p.47-62 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 62 |
---|---|
container_issue | |
container_start_page | 47 |
container_title | Fuzzy sets and systems |
container_volume | 237 |
creator | Wu, Gin-Der Zhu, Zhen-Wei |
description | This paper proposes an enhanced discriminability recurrent fuzzy neural network for temporal classification problems. To consider classification problems, the most important consideration is the “discriminability”. To enhance the “discriminability”, the feedback topology of the proposed fuzzy neural network is fully connected in order to handle temporal pattern behavior. Furthermore, the proposed fuzzy neural network considers minimum-classification-error and minimum-training-error. In minimum-classification-error, the weights are updated by maximizing the discrimination among different classes. In minimum-training-error, the parameter learning adopts the gradient descent method to reduce the cost function. Therefore, the novelty of the enhanced discriminability recurrent fuzzy neural network is that it not only minimizes the cost function but also maximizes the discriminability. It is constructed from structure and parameter learning. Simulations and comparisons with other recurrent fuzzy neural networks verify the performance of the enhanced discriminability recurrent fuzzy neural network under noisy conditions. Analysis results indicate that the proposed fuzzy neural network exhibits excellent classification performance. |
doi_str_mv | 10.1016/j.fss.2013.05.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1531029799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S016501141300225X</els_id><sourcerecordid>1531029799</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-f1c0f89b593e82d0c9aa84d0da7a47a9a66f4b998d0e37c24254cf0d3ffbcc353</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwA7jlyCVhHedlcaoqXlIlLnA2jrMWLold7ATU_noclTOnWa1mdjUfIdcUMgq0ut1mOoQsB8oyKDOA-oQsaFPnadUAPSWL6ClToLQ4JxchbAHiXMGCvK9sgvZDWoVd0pmgvBmMla3pzbhPPKrJe7RjoqfDYZ9YnLzso4w_zn8m2vlkxGHn5qXqZQhGGyVH42yy867tcQiX5EzLPuDVny7J28P96_op3bw8Pq9Xm1QxBmOqqQLd8LbkDJu8A8WlbIoOOlnLopZcVpUuWs6bDpDVKi_yslAaOqZ1qxQr2ZLcHO_Gx18ThlEMsQ32vbTopiBoySjkvOY8WunRqrwLwaMWu9ha-r2gIGaaYisiTTHTFFCKSDNm7o4ZjB2-DXoRlMGZmomQRtE580_6F_I3gC8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1531029799</pqid></control><display><type>article</type><title>An enhanced discriminability recurrent fuzzy neural network for temporal classification problems</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Wu, Gin-Der ; Zhu, Zhen-Wei</creator><creatorcontrib>Wu, Gin-Der ; Zhu, Zhen-Wei</creatorcontrib><description>This paper proposes an enhanced discriminability recurrent fuzzy neural network for temporal classification problems. To consider classification problems, the most important consideration is the “discriminability”. To enhance the “discriminability”, the feedback topology of the proposed fuzzy neural network is fully connected in order to handle temporal pattern behavior. Furthermore, the proposed fuzzy neural network considers minimum-classification-error and minimum-training-error. In minimum-classification-error, the weights are updated by maximizing the discrimination among different classes. In minimum-training-error, the parameter learning adopts the gradient descent method to reduce the cost function. Therefore, the novelty of the enhanced discriminability recurrent fuzzy neural network is that it not only minimizes the cost function but also maximizes the discriminability. It is constructed from structure and parameter learning. Simulations and comparisons with other recurrent fuzzy neural networks verify the performance of the enhanced discriminability recurrent fuzzy neural network under noisy conditions. Analysis results indicate that the proposed fuzzy neural network exhibits excellent classification performance.</description><identifier>ISSN: 0165-0114</identifier><identifier>EISSN: 1872-6801</identifier><identifier>DOI: 10.1016/j.fss.2013.05.007</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Artificial neural networks ; Classification ; Cost function ; Enhanced discriminability ; Fuzzy logic ; Fuzzy set theory ; Learning ; Minimum-classification-error ; Minimum-training-error ; Networks ; Recurrent fuzzy neural network ; Temporal classification ; Temporal logic</subject><ispartof>Fuzzy sets and systems, 2014-02, Vol.237, p.47-62</ispartof><rights>2013 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-f1c0f89b593e82d0c9aa84d0da7a47a9a66f4b998d0e37c24254cf0d3ffbcc353</citedby><cites>FETCH-LOGICAL-c330t-f1c0f89b593e82d0c9aa84d0da7a47a9a66f4b998d0e37c24254cf0d3ffbcc353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fss.2013.05.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Wu, Gin-Der</creatorcontrib><creatorcontrib>Zhu, Zhen-Wei</creatorcontrib><title>An enhanced discriminability recurrent fuzzy neural network for temporal classification problems</title><title>Fuzzy sets and systems</title><description>This paper proposes an enhanced discriminability recurrent fuzzy neural network for temporal classification problems. To consider classification problems, the most important consideration is the “discriminability”. To enhance the “discriminability”, the feedback topology of the proposed fuzzy neural network is fully connected in order to handle temporal pattern behavior. Furthermore, the proposed fuzzy neural network considers minimum-classification-error and minimum-training-error. In minimum-classification-error, the weights are updated by maximizing the discrimination among different classes. In minimum-training-error, the parameter learning adopts the gradient descent method to reduce the cost function. Therefore, the novelty of the enhanced discriminability recurrent fuzzy neural network is that it not only minimizes the cost function but also maximizes the discriminability. It is constructed from structure and parameter learning. Simulations and comparisons with other recurrent fuzzy neural networks verify the performance of the enhanced discriminability recurrent fuzzy neural network under noisy conditions. Analysis results indicate that the proposed fuzzy neural network exhibits excellent classification performance.</description><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Cost function</subject><subject>Enhanced discriminability</subject><subject>Fuzzy logic</subject><subject>Fuzzy set theory</subject><subject>Learning</subject><subject>Minimum-classification-error</subject><subject>Minimum-training-error</subject><subject>Networks</subject><subject>Recurrent fuzzy neural network</subject><subject>Temporal classification</subject><subject>Temporal logic</subject><issn>0165-0114</issn><issn>1872-6801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwA7jlyCVhHedlcaoqXlIlLnA2jrMWLold7ATU_noclTOnWa1mdjUfIdcUMgq0ut1mOoQsB8oyKDOA-oQsaFPnadUAPSWL6ClToLQ4JxchbAHiXMGCvK9sgvZDWoVd0pmgvBmMla3pzbhPPKrJe7RjoqfDYZ9YnLzso4w_zn8m2vlkxGHn5qXqZQhGGyVH42yy867tcQiX5EzLPuDVny7J28P96_op3bw8Pq9Xm1QxBmOqqQLd8LbkDJu8A8WlbIoOOlnLopZcVpUuWs6bDpDVKi_yslAaOqZ1qxQr2ZLcHO_Gx18ThlEMsQ32vbTopiBoySjkvOY8WunRqrwLwaMWu9ha-r2gIGaaYisiTTHTFFCKSDNm7o4ZjB2-DXoRlMGZmomQRtE580_6F_I3gC8</recordid><startdate>20140216</startdate><enddate>20140216</enddate><creator>Wu, Gin-Der</creator><creator>Zhu, Zhen-Wei</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140216</creationdate><title>An enhanced discriminability recurrent fuzzy neural network for temporal classification problems</title><author>Wu, Gin-Der ; Zhu, Zhen-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-f1c0f89b593e82d0c9aa84d0da7a47a9a66f4b998d0e37c24254cf0d3ffbcc353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Cost function</topic><topic>Enhanced discriminability</topic><topic>Fuzzy logic</topic><topic>Fuzzy set theory</topic><topic>Learning</topic><topic>Minimum-classification-error</topic><topic>Minimum-training-error</topic><topic>Networks</topic><topic>Recurrent fuzzy neural network</topic><topic>Temporal classification</topic><topic>Temporal logic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Gin-Der</creatorcontrib><creatorcontrib>Zhu, Zhen-Wei</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Fuzzy sets and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Gin-Der</au><au>Zhu, Zhen-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An enhanced discriminability recurrent fuzzy neural network for temporal classification problems</atitle><jtitle>Fuzzy sets and systems</jtitle><date>2014-02-16</date><risdate>2014</risdate><volume>237</volume><spage>47</spage><epage>62</epage><pages>47-62</pages><issn>0165-0114</issn><eissn>1872-6801</eissn><abstract>This paper proposes an enhanced discriminability recurrent fuzzy neural network for temporal classification problems. To consider classification problems, the most important consideration is the “discriminability”. To enhance the “discriminability”, the feedback topology of the proposed fuzzy neural network is fully connected in order to handle temporal pattern behavior. Furthermore, the proposed fuzzy neural network considers minimum-classification-error and minimum-training-error. In minimum-classification-error, the weights are updated by maximizing the discrimination among different classes. In minimum-training-error, the parameter learning adopts the gradient descent method to reduce the cost function. Therefore, the novelty of the enhanced discriminability recurrent fuzzy neural network is that it not only minimizes the cost function but also maximizes the discriminability. It is constructed from structure and parameter learning. Simulations and comparisons with other recurrent fuzzy neural networks verify the performance of the enhanced discriminability recurrent fuzzy neural network under noisy conditions. Analysis results indicate that the proposed fuzzy neural network exhibits excellent classification performance.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.fss.2013.05.007</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-0114 |
ispartof | Fuzzy sets and systems, 2014-02, Vol.237, p.47-62 |
issn | 0165-0114 1872-6801 |
language | eng |
recordid | cdi_proquest_miscellaneous_1531029799 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Artificial neural networks Classification Cost function Enhanced discriminability Fuzzy logic Fuzzy set theory Learning Minimum-classification-error Minimum-training-error Networks Recurrent fuzzy neural network Temporal classification Temporal logic |
title | An enhanced discriminability recurrent fuzzy neural network for temporal classification problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A04%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20enhanced%20discriminability%20recurrent%20fuzzy%20neural%20network%20for%20temporal%20classification%20problems&rft.jtitle=Fuzzy%20sets%20and%20systems&rft.au=Wu,%20Gin-Der&rft.date=2014-02-16&rft.volume=237&rft.spage=47&rft.epage=62&rft.pages=47-62&rft.issn=0165-0114&rft.eissn=1872-6801&rft_id=info:doi/10.1016/j.fss.2013.05.007&rft_dat=%3Cproquest_cross%3E1531029799%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1531029799&rft_id=info:pmid/&rft_els_id=S016501141300225X&rfr_iscdi=true |