An enhanced discriminability recurrent fuzzy neural network for temporal classification problems

This paper proposes an enhanced discriminability recurrent fuzzy neural network for temporal classification problems. To consider classification problems, the most important consideration is the “discriminability”. To enhance the “discriminability”, the feedback topology of the proposed fuzzy neural...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuzzy sets and systems 2014-02, Vol.237, p.47-62
Hauptverfasser: Wu, Gin-Der, Zhu, Zhen-Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 62
container_issue
container_start_page 47
container_title Fuzzy sets and systems
container_volume 237
creator Wu, Gin-Der
Zhu, Zhen-Wei
description This paper proposes an enhanced discriminability recurrent fuzzy neural network for temporal classification problems. To consider classification problems, the most important consideration is the “discriminability”. To enhance the “discriminability”, the feedback topology of the proposed fuzzy neural network is fully connected in order to handle temporal pattern behavior. Furthermore, the proposed fuzzy neural network considers minimum-classification-error and minimum-training-error. In minimum-classification-error, the weights are updated by maximizing the discrimination among different classes. In minimum-training-error, the parameter learning adopts the gradient descent method to reduce the cost function. Therefore, the novelty of the enhanced discriminability recurrent fuzzy neural network is that it not only minimizes the cost function but also maximizes the discriminability. It is constructed from structure and parameter learning. Simulations and comparisons with other recurrent fuzzy neural networks verify the performance of the enhanced discriminability recurrent fuzzy neural network under noisy conditions. Analysis results indicate that the proposed fuzzy neural network exhibits excellent classification performance.
doi_str_mv 10.1016/j.fss.2013.05.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1531029799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S016501141300225X</els_id><sourcerecordid>1531029799</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-f1c0f89b593e82d0c9aa84d0da7a47a9a66f4b998d0e37c24254cf0d3ffbcc353</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwA7jlyCVhHedlcaoqXlIlLnA2jrMWLold7ATU_noclTOnWa1mdjUfIdcUMgq0ut1mOoQsB8oyKDOA-oQsaFPnadUAPSWL6ClToLQ4JxchbAHiXMGCvK9sgvZDWoVd0pmgvBmMla3pzbhPPKrJe7RjoqfDYZ9YnLzso4w_zn8m2vlkxGHn5qXqZQhGGyVH42yy867tcQiX5EzLPuDVny7J28P96_op3bw8Pq9Xm1QxBmOqqQLd8LbkDJu8A8WlbIoOOlnLopZcVpUuWs6bDpDVKi_yslAaOqZ1qxQr2ZLcHO_Gx18ThlEMsQ32vbTopiBoySjkvOY8WunRqrwLwaMWu9ha-r2gIGaaYisiTTHTFFCKSDNm7o4ZjB2-DXoRlMGZmomQRtE580_6F_I3gC8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1531029799</pqid></control><display><type>article</type><title>An enhanced discriminability recurrent fuzzy neural network for temporal classification problems</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Wu, Gin-Der ; Zhu, Zhen-Wei</creator><creatorcontrib>Wu, Gin-Der ; Zhu, Zhen-Wei</creatorcontrib><description>This paper proposes an enhanced discriminability recurrent fuzzy neural network for temporal classification problems. To consider classification problems, the most important consideration is the “discriminability”. To enhance the “discriminability”, the feedback topology of the proposed fuzzy neural network is fully connected in order to handle temporal pattern behavior. Furthermore, the proposed fuzzy neural network considers minimum-classification-error and minimum-training-error. In minimum-classification-error, the weights are updated by maximizing the discrimination among different classes. In minimum-training-error, the parameter learning adopts the gradient descent method to reduce the cost function. Therefore, the novelty of the enhanced discriminability recurrent fuzzy neural network is that it not only minimizes the cost function but also maximizes the discriminability. It is constructed from structure and parameter learning. Simulations and comparisons with other recurrent fuzzy neural networks verify the performance of the enhanced discriminability recurrent fuzzy neural network under noisy conditions. Analysis results indicate that the proposed fuzzy neural network exhibits excellent classification performance.</description><identifier>ISSN: 0165-0114</identifier><identifier>EISSN: 1872-6801</identifier><identifier>DOI: 10.1016/j.fss.2013.05.007</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Artificial neural networks ; Classification ; Cost function ; Enhanced discriminability ; Fuzzy logic ; Fuzzy set theory ; Learning ; Minimum-classification-error ; Minimum-training-error ; Networks ; Recurrent fuzzy neural network ; Temporal classification ; Temporal logic</subject><ispartof>Fuzzy sets and systems, 2014-02, Vol.237, p.47-62</ispartof><rights>2013 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-f1c0f89b593e82d0c9aa84d0da7a47a9a66f4b998d0e37c24254cf0d3ffbcc353</citedby><cites>FETCH-LOGICAL-c330t-f1c0f89b593e82d0c9aa84d0da7a47a9a66f4b998d0e37c24254cf0d3ffbcc353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fss.2013.05.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Wu, Gin-Der</creatorcontrib><creatorcontrib>Zhu, Zhen-Wei</creatorcontrib><title>An enhanced discriminability recurrent fuzzy neural network for temporal classification problems</title><title>Fuzzy sets and systems</title><description>This paper proposes an enhanced discriminability recurrent fuzzy neural network for temporal classification problems. To consider classification problems, the most important consideration is the “discriminability”. To enhance the “discriminability”, the feedback topology of the proposed fuzzy neural network is fully connected in order to handle temporal pattern behavior. Furthermore, the proposed fuzzy neural network considers minimum-classification-error and minimum-training-error. In minimum-classification-error, the weights are updated by maximizing the discrimination among different classes. In minimum-training-error, the parameter learning adopts the gradient descent method to reduce the cost function. Therefore, the novelty of the enhanced discriminability recurrent fuzzy neural network is that it not only minimizes the cost function but also maximizes the discriminability. It is constructed from structure and parameter learning. Simulations and comparisons with other recurrent fuzzy neural networks verify the performance of the enhanced discriminability recurrent fuzzy neural network under noisy conditions. Analysis results indicate that the proposed fuzzy neural network exhibits excellent classification performance.</description><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Cost function</subject><subject>Enhanced discriminability</subject><subject>Fuzzy logic</subject><subject>Fuzzy set theory</subject><subject>Learning</subject><subject>Minimum-classification-error</subject><subject>Minimum-training-error</subject><subject>Networks</subject><subject>Recurrent fuzzy neural network</subject><subject>Temporal classification</subject><subject>Temporal logic</subject><issn>0165-0114</issn><issn>1872-6801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwA7jlyCVhHedlcaoqXlIlLnA2jrMWLold7ATU_noclTOnWa1mdjUfIdcUMgq0ut1mOoQsB8oyKDOA-oQsaFPnadUAPSWL6ClToLQ4JxchbAHiXMGCvK9sgvZDWoVd0pmgvBmMla3pzbhPPKrJe7RjoqfDYZ9YnLzso4w_zn8m2vlkxGHn5qXqZQhGGyVH42yy867tcQiX5EzLPuDVny7J28P96_op3bw8Pq9Xm1QxBmOqqQLd8LbkDJu8A8WlbIoOOlnLopZcVpUuWs6bDpDVKi_yslAaOqZ1qxQr2ZLcHO_Gx18ThlEMsQ32vbTopiBoySjkvOY8WunRqrwLwaMWu9ha-r2gIGaaYisiTTHTFFCKSDNm7o4ZjB2-DXoRlMGZmomQRtE580_6F_I3gC8</recordid><startdate>20140216</startdate><enddate>20140216</enddate><creator>Wu, Gin-Der</creator><creator>Zhu, Zhen-Wei</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140216</creationdate><title>An enhanced discriminability recurrent fuzzy neural network for temporal classification problems</title><author>Wu, Gin-Der ; Zhu, Zhen-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-f1c0f89b593e82d0c9aa84d0da7a47a9a66f4b998d0e37c24254cf0d3ffbcc353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Cost function</topic><topic>Enhanced discriminability</topic><topic>Fuzzy logic</topic><topic>Fuzzy set theory</topic><topic>Learning</topic><topic>Minimum-classification-error</topic><topic>Minimum-training-error</topic><topic>Networks</topic><topic>Recurrent fuzzy neural network</topic><topic>Temporal classification</topic><topic>Temporal logic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Gin-Der</creatorcontrib><creatorcontrib>Zhu, Zhen-Wei</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Fuzzy sets and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Gin-Der</au><au>Zhu, Zhen-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An enhanced discriminability recurrent fuzzy neural network for temporal classification problems</atitle><jtitle>Fuzzy sets and systems</jtitle><date>2014-02-16</date><risdate>2014</risdate><volume>237</volume><spage>47</spage><epage>62</epage><pages>47-62</pages><issn>0165-0114</issn><eissn>1872-6801</eissn><abstract>This paper proposes an enhanced discriminability recurrent fuzzy neural network for temporal classification problems. To consider classification problems, the most important consideration is the “discriminability”. To enhance the “discriminability”, the feedback topology of the proposed fuzzy neural network is fully connected in order to handle temporal pattern behavior. Furthermore, the proposed fuzzy neural network considers minimum-classification-error and minimum-training-error. In minimum-classification-error, the weights are updated by maximizing the discrimination among different classes. In minimum-training-error, the parameter learning adopts the gradient descent method to reduce the cost function. Therefore, the novelty of the enhanced discriminability recurrent fuzzy neural network is that it not only minimizes the cost function but also maximizes the discriminability. It is constructed from structure and parameter learning. Simulations and comparisons with other recurrent fuzzy neural networks verify the performance of the enhanced discriminability recurrent fuzzy neural network under noisy conditions. Analysis results indicate that the proposed fuzzy neural network exhibits excellent classification performance.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.fss.2013.05.007</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0165-0114
ispartof Fuzzy sets and systems, 2014-02, Vol.237, p.47-62
issn 0165-0114
1872-6801
language eng
recordid cdi_proquest_miscellaneous_1531029799
source Elsevier ScienceDirect Journals Complete
subjects Artificial neural networks
Classification
Cost function
Enhanced discriminability
Fuzzy logic
Fuzzy set theory
Learning
Minimum-classification-error
Minimum-training-error
Networks
Recurrent fuzzy neural network
Temporal classification
Temporal logic
title An enhanced discriminability recurrent fuzzy neural network for temporal classification problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A04%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20enhanced%20discriminability%20recurrent%20fuzzy%20neural%20network%20for%20temporal%20classification%20problems&rft.jtitle=Fuzzy%20sets%20and%20systems&rft.au=Wu,%20Gin-Der&rft.date=2014-02-16&rft.volume=237&rft.spage=47&rft.epage=62&rft.pages=47-62&rft.issn=0165-0114&rft.eissn=1872-6801&rft_id=info:doi/10.1016/j.fss.2013.05.007&rft_dat=%3Cproquest_cross%3E1531029799%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1531029799&rft_id=info:pmid/&rft_els_id=S016501141300225X&rfr_iscdi=true