Developments in electrode materials and electrolytes for aluminium–air batteries
Aluminium–air cells are high-energy density (
Gespeichert in:
Veröffentlicht in: | Journal of power sources 2013-08, Vol.236, p.293-310 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 310 |
---|---|
container_issue | |
container_start_page | 293 |
container_title | Journal of power sources |
container_volume | 236 |
creator | Egan, D.R. Ponce de León, C. Wood, R.J.K. Jones, R.L. Stokes, K.R. Walsh, F.C. |
description | Aluminium–air cells are high-energy density ( |
doi_str_mv | 10.1016/j.jpowsour.2013.01.141 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1531028514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775313001985</els_id><sourcerecordid>1531028514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-813b71196118368423efd6985fbedda4bfe3b1354513b6614399f0a0c6eeeb0e3</originalsourceid><addsrcrecordid>eNqFkMtKxTAQQIMoeH38gnQjuGnNNM2jO8U3CILoOqTpFHJpm2vSKu78B__QLzGXq25dDQznzMAh5AhoARTE6bJYrvxb9HMoSgqsoFBABVtkAUqyvJScb5MFZVLlUnK2S_ZiXFJKASRdkMdLfMXerwYcp5i5McMe7RR8i9lgJgzO9DEzY_u7798njFnnQ2b6eXCjm4evj0_jQtaYac1jPCA7XbLw8Gfuk-frq6eL2_z-4ebu4vw-t1XJplwBayRALQAUEyrtsGtFrXjXYNuaqumQNcB4xRMoBFSsrjtqqBWI2FBk--Rkc3cV_MuMcdKDixb73ozo56iBM6Cl4sn8F60qJUVZ1nVCxQa1wccYsNOr4AYT3jVQve6tl_q3t1731hSSD0k8_vlhojV9F8xoXfyzS8lExWuVuLMNh6nNq8Ogo3U4WmxdSIl1691_r74BnwKbuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1448762299</pqid></control><display><type>article</type><title>Developments in electrode materials and electrolytes for aluminium–air batteries</title><source>Elsevier ScienceDirect Journals</source><creator>Egan, D.R. ; Ponce de León, C. ; Wood, R.J.K. ; Jones, R.L. ; Stokes, K.R. ; Walsh, F.C.</creator><creatorcontrib>Egan, D.R. ; Ponce de León, C. ; Wood, R.J.K. ; Jones, R.L. ; Stokes, K.R. ; Walsh, F.C.</creatorcontrib><description>Aluminium–air cells are high-energy density (<400 W h kg−1) primary batteries developed in the 1960s. This review shows the influence of the materials, including: aluminium alloy, oxygen reduction catalyst and electrolyte type, in the battery performance. Two issues are considered: (a) the parasitic corrosion of aluminium at open-circuit potential and under discharge, due to the reduction of water on the anode and (b) the formation of a passive hydroxide layer on aluminium, which inhibits dissolution and shifts its potential to positive values. To overcome these two issues, super-pure (99.999 wt%) aluminium alloyed with traces of Mg, Sn, In and Ga are used to inhibit corrosion or to break down the passive hydroxide layer. Since high-purity aluminium alloys are expensive, an alternative approach is to add inhibitors or additives directly into the electrolyte. The effectiveness of binary and ternary alloys and the addition of different electrolyte additives are evaluated. Novel methods to overcome the self-corrosion problem include using anionic membranes and gel electrolytes or alternative solvents, such as alcohols or ionic liquids, to replace aqueous solutions. The air cathode is also considered and future opportunities and directions for the development of aluminium–air cells are highlighted.
► Discussion of the rationale to choose a suitable alloy for Al–air battery. ► Effect of the properties and preparation route to enhance the oxidation of Al. ► Effect of the inhibitors on the anode oxidation in the alkaline electrolyte. ► Comparison of the performance of high-activity oxygen reduction electrodes.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2013.01.141</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Aluminium ; Aluminium anode ; Aluminum ; Aluminum base alloys ; Applied sciences ; Corrosion ; Corrosion inhibitors ; Corrosion mechanisms ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electrolytes ; Electrolytic cells ; Equilibrium redox potential ; Exact sciences and technology ; Inhibition ; Inhibitors ; Ionic liquid ; Materials ; Metals. Metallurgy ; Oxygen reduction ; Reduction (electrolytic)</subject><ispartof>Journal of power sources, 2013-08, Vol.236, p.293-310</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-813b71196118368423efd6985fbedda4bfe3b1354513b6614399f0a0c6eeeb0e3</citedby><cites>FETCH-LOGICAL-c423t-813b71196118368423efd6985fbedda4bfe3b1354513b6614399f0a0c6eeeb0e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378775313001985$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27364598$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Egan, D.R.</creatorcontrib><creatorcontrib>Ponce de León, C.</creatorcontrib><creatorcontrib>Wood, R.J.K.</creatorcontrib><creatorcontrib>Jones, R.L.</creatorcontrib><creatorcontrib>Stokes, K.R.</creatorcontrib><creatorcontrib>Walsh, F.C.</creatorcontrib><title>Developments in electrode materials and electrolytes for aluminium–air batteries</title><title>Journal of power sources</title><description>Aluminium–air cells are high-energy density (<400 W h kg−1) primary batteries developed in the 1960s. This review shows the influence of the materials, including: aluminium alloy, oxygen reduction catalyst and electrolyte type, in the battery performance. Two issues are considered: (a) the parasitic corrosion of aluminium at open-circuit potential and under discharge, due to the reduction of water on the anode and (b) the formation of a passive hydroxide layer on aluminium, which inhibits dissolution and shifts its potential to positive values. To overcome these two issues, super-pure (99.999 wt%) aluminium alloyed with traces of Mg, Sn, In and Ga are used to inhibit corrosion or to break down the passive hydroxide layer. Since high-purity aluminium alloys are expensive, an alternative approach is to add inhibitors or additives directly into the electrolyte. The effectiveness of binary and ternary alloys and the addition of different electrolyte additives are evaluated. Novel methods to overcome the self-corrosion problem include using anionic membranes and gel electrolytes or alternative solvents, such as alcohols or ionic liquids, to replace aqueous solutions. The air cathode is also considered and future opportunities and directions for the development of aluminium–air cells are highlighted.
► Discussion of the rationale to choose a suitable alloy for Al–air battery. ► Effect of the properties and preparation route to enhance the oxidation of Al. ► Effect of the inhibitors on the anode oxidation in the alkaline electrolyte. ► Comparison of the performance of high-activity oxygen reduction electrodes.</description><subject>Aluminium</subject><subject>Aluminium anode</subject><subject>Aluminum</subject><subject>Aluminum base alloys</subject><subject>Applied sciences</subject><subject>Corrosion</subject><subject>Corrosion inhibitors</subject><subject>Corrosion mechanisms</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Equilibrium redox potential</subject><subject>Exact sciences and technology</subject><subject>Inhibition</subject><subject>Inhibitors</subject><subject>Ionic liquid</subject><subject>Materials</subject><subject>Metals. Metallurgy</subject><subject>Oxygen reduction</subject><subject>Reduction (electrolytic)</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKxTAQQIMoeH38gnQjuGnNNM2jO8U3CILoOqTpFHJpm2vSKu78B__QLzGXq25dDQznzMAh5AhoARTE6bJYrvxb9HMoSgqsoFBABVtkAUqyvJScb5MFZVLlUnK2S_ZiXFJKASRdkMdLfMXerwYcp5i5McMe7RR8i9lgJgzO9DEzY_u7798njFnnQ2b6eXCjm4evj0_jQtaYac1jPCA7XbLw8Gfuk-frq6eL2_z-4ebu4vw-t1XJplwBayRALQAUEyrtsGtFrXjXYNuaqumQNcB4xRMoBFSsrjtqqBWI2FBk--Rkc3cV_MuMcdKDixb73ozo56iBM6Cl4sn8F60qJUVZ1nVCxQa1wccYsNOr4AYT3jVQve6tl_q3t1731hSSD0k8_vlhojV9F8xoXfyzS8lExWuVuLMNh6nNq8Ogo3U4WmxdSIl1691_r74BnwKbuA</recordid><startdate>20130815</startdate><enddate>20130815</enddate><creator>Egan, D.R.</creator><creator>Ponce de León, C.</creator><creator>Wood, R.J.K.</creator><creator>Jones, R.L.</creator><creator>Stokes, K.R.</creator><creator>Walsh, F.C.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SE</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20130815</creationdate><title>Developments in electrode materials and electrolytes for aluminium–air batteries</title><author>Egan, D.R. ; Ponce de León, C. ; Wood, R.J.K. ; Jones, R.L. ; Stokes, K.R. ; Walsh, F.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-813b71196118368423efd6985fbedda4bfe3b1354513b6614399f0a0c6eeeb0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aluminium</topic><topic>Aluminium anode</topic><topic>Aluminum</topic><topic>Aluminum base alloys</topic><topic>Applied sciences</topic><topic>Corrosion</topic><topic>Corrosion inhibitors</topic><topic>Corrosion mechanisms</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Equilibrium redox potential</topic><topic>Exact sciences and technology</topic><topic>Inhibition</topic><topic>Inhibitors</topic><topic>Ionic liquid</topic><topic>Materials</topic><topic>Metals. Metallurgy</topic><topic>Oxygen reduction</topic><topic>Reduction (electrolytic)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Egan, D.R.</creatorcontrib><creatorcontrib>Ponce de León, C.</creatorcontrib><creatorcontrib>Wood, R.J.K.</creatorcontrib><creatorcontrib>Jones, R.L.</creatorcontrib><creatorcontrib>Stokes, K.R.</creatorcontrib><creatorcontrib>Walsh, F.C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Egan, D.R.</au><au>Ponce de León, C.</au><au>Wood, R.J.K.</au><au>Jones, R.L.</au><au>Stokes, K.R.</au><au>Walsh, F.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Developments in electrode materials and electrolytes for aluminium–air batteries</atitle><jtitle>Journal of power sources</jtitle><date>2013-08-15</date><risdate>2013</risdate><volume>236</volume><spage>293</spage><epage>310</epage><pages>293-310</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>Aluminium–air cells are high-energy density (<400 W h kg−1) primary batteries developed in the 1960s. This review shows the influence of the materials, including: aluminium alloy, oxygen reduction catalyst and electrolyte type, in the battery performance. Two issues are considered: (a) the parasitic corrosion of aluminium at open-circuit potential and under discharge, due to the reduction of water on the anode and (b) the formation of a passive hydroxide layer on aluminium, which inhibits dissolution and shifts its potential to positive values. To overcome these two issues, super-pure (99.999 wt%) aluminium alloyed with traces of Mg, Sn, In and Ga are used to inhibit corrosion or to break down the passive hydroxide layer. Since high-purity aluminium alloys are expensive, an alternative approach is to add inhibitors or additives directly into the electrolyte. The effectiveness of binary and ternary alloys and the addition of different electrolyte additives are evaluated. Novel methods to overcome the self-corrosion problem include using anionic membranes and gel electrolytes or alternative solvents, such as alcohols or ionic liquids, to replace aqueous solutions. The air cathode is also considered and future opportunities and directions for the development of aluminium–air cells are highlighted.
► Discussion of the rationale to choose a suitable alloy for Al–air battery. ► Effect of the properties and preparation route to enhance the oxidation of Al. ► Effect of the inhibitors on the anode oxidation in the alkaline electrolyte. ► Comparison of the performance of high-activity oxygen reduction electrodes.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2013.01.141</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7753 |
ispartof | Journal of power sources, 2013-08, Vol.236, p.293-310 |
issn | 0378-7753 1873-2755 |
language | eng |
recordid | cdi_proquest_miscellaneous_1531028514 |
source | Elsevier ScienceDirect Journals |
subjects | Aluminium Aluminium anode Aluminum Aluminum base alloys Applied sciences Corrosion Corrosion inhibitors Corrosion mechanisms Direct energy conversion and energy accumulation Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Electrolytes Electrolytic cells Equilibrium redox potential Exact sciences and technology Inhibition Inhibitors Ionic liquid Materials Metals. Metallurgy Oxygen reduction Reduction (electrolytic) |
title | Developments in electrode materials and electrolytes for aluminium–air batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A59%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Developments%20in%20electrode%20materials%20and%20electrolytes%20for%20aluminium%E2%80%93air%20batteries&rft.jtitle=Journal%20of%20power%20sources&rft.au=Egan,%20D.R.&rft.date=2013-08-15&rft.volume=236&rft.spage=293&rft.epage=310&rft.pages=293-310&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2013.01.141&rft_dat=%3Cproquest_cross%3E1531028514%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1448762299&rft_id=info:pmid/&rft_els_id=S0378775313001985&rfr_iscdi=true |